| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrval2.1 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntrval2.2 |
⊢ + = ( +g ‘ 𝑀 ) |
| 3 |
|
cntrval2.3 |
⊢ − = ( -g ‘ 𝑀 ) |
| 4 |
|
cntrval2.4 |
⊢ ⊕ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) |
| 5 |
|
id |
⊢ ( 𝑀 ∈ Grp → 𝑀 ∈ Grp ) |
| 6 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝑀 ∈ Grp → 𝐵 ∈ V ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → 𝑀 ∈ Grp ) |
| 9 |
|
xp1st |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ 𝐵 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st ‘ 𝑧 ) ∈ 𝐵 ) |
| 11 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) → ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) |
| 13 |
1 2 8 10 12
|
grpcld |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 14 |
1 3 8 13 10
|
grpsubcld |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) − ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
|
vex |
⊢ 𝑦 ∈ V |
| 17 |
15 16
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 18 |
15 16
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 19 |
17 18
|
oveq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) = ( 𝑥 + 𝑦 ) ) |
| 20 |
19 17
|
oveq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) − ( 1st ‘ 𝑧 ) ) = ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) |
| 21 |
20
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) − ( 1st ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) |
| 22 |
4 21
|
eqtr4i |
⊢ ⊕ = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) − ( 1st ‘ 𝑧 ) ) ) |
| 23 |
14 22
|
fmptd |
⊢ ( 𝑀 ∈ Grp → ⊕ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 24 |
4
|
a1i |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ⊕ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) ) |
| 25 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑥 = ( 0g ‘ 𝑀 ) ) |
| 26 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
| 27 |
25 26
|
oveq12d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( 𝑥 + 𝑦 ) = ( ( 0g ‘ 𝑀 ) + 𝑧 ) ) |
| 28 |
27 25
|
oveq12d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( ( 0g ‘ 𝑀 ) + 𝑧 ) − ( 0g ‘ 𝑀 ) ) ) |
| 29 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑀 ∈ Grp ) |
| 30 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 31 |
1 30
|
grpidcl |
⊢ ( 𝑀 ∈ Grp → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 32 |
31
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 33 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑧 ∈ 𝐵 ) |
| 34 |
1 2 29 32 33
|
grpcld |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 0g ‘ 𝑀 ) + 𝑧 ) ∈ 𝐵 ) |
| 35 |
1 30 3
|
grpsubid1 |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( 0g ‘ 𝑀 ) + 𝑧 ) ∈ 𝐵 ) → ( ( ( 0g ‘ 𝑀 ) + 𝑧 ) − ( 0g ‘ 𝑀 ) ) = ( ( 0g ‘ 𝑀 ) + 𝑧 ) ) |
| 36 |
29 34 35
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( ( 0g ‘ 𝑀 ) + 𝑧 ) − ( 0g ‘ 𝑀 ) ) = ( ( 0g ‘ 𝑀 ) + 𝑧 ) ) |
| 37 |
1 2 30 29 33
|
grplidd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 0g ‘ 𝑀 ) + 𝑧 ) = 𝑧 ) |
| 38 |
28 36 37
|
3eqtrd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = 𝑧 ) |
| 39 |
38
|
anasss |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 = ( 0g ‘ 𝑀 ) ∧ 𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = 𝑧 ) |
| 40 |
31
|
adantr |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 41 |
|
simpr |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 42 |
24 39 40 41 41
|
ovmpod |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ⊕ 𝑧 ) = 𝑧 ) |
| 43 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑀 ∈ Grp ) |
| 44 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑢 ∈ 𝐵 ) |
| 45 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝐵 ) |
| 46 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 47 |
1 2 43 44 45 46
|
grpassd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑢 + 𝑣 ) + 𝑧 ) = ( 𝑢 + ( 𝑣 + 𝑧 ) ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) − ( 𝑢 + 𝑣 ) ) = ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − ( 𝑢 + 𝑣 ) ) ) |
| 49 |
1 2 43 45 46
|
grpcld |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑣 + 𝑧 ) ∈ 𝐵 ) |
| 50 |
1 2 43 44 49
|
grpcld |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 + ( 𝑣 + 𝑧 ) ) ∈ 𝐵 ) |
| 51 |
1 2 3
|
grpsubsub4 |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − 𝑣 ) − 𝑢 ) = ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − ( 𝑢 + 𝑣 ) ) ) |
| 52 |
43 50 45 44 51
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − 𝑣 ) − 𝑢 ) = ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − ( 𝑢 + 𝑣 ) ) ) |
| 53 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑢 ∈ 𝐵 ∧ ( 𝑣 + 𝑧 ) ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − 𝑣 ) = ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) ) |
| 54 |
43 44 49 45 53
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − 𝑣 ) = ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) − 𝑣 ) − 𝑢 ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) − 𝑢 ) ) |
| 56 |
48 52 55
|
3eqtr2d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) − ( 𝑢 + 𝑣 ) ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) − 𝑢 ) ) |
| 57 |
4
|
a1i |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ⊕ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) ) |
| 58 |
|
simprl |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → 𝑥 = ( 𝑢 + 𝑣 ) ) |
| 59 |
|
simprr |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 60 |
58 59
|
oveq12d |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → ( 𝑥 + 𝑦 ) = ( ( 𝑢 + 𝑣 ) + 𝑧 ) ) |
| 61 |
60 58
|
oveq12d |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) − ( 𝑢 + 𝑣 ) ) ) |
| 62 |
1 2 43 44 45
|
grpcld |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 + 𝑣 ) ∈ 𝐵 ) |
| 63 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) − ( 𝑢 + 𝑣 ) ) ∈ V ) |
| 64 |
57 61 62 46 63
|
ovmpod |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) − ( 𝑢 + 𝑣 ) ) ) |
| 65 |
|
simprl |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) ) → 𝑥 = 𝑢 ) |
| 66 |
|
simprr |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) ) → 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) |
| 67 |
|
simprl |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) ) → 𝑥 = 𝑣 ) |
| 68 |
|
simprr |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 69 |
67 68
|
oveq12d |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑣 + 𝑧 ) ) |
| 70 |
69 67
|
oveq12d |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) |
| 71 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑣 + 𝑧 ) − 𝑣 ) ∈ V ) |
| 72 |
57 70 45 46 71
|
ovmpod |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑣 ⊕ 𝑧 ) = ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) ) → ( 𝑣 ⊕ 𝑧 ) = ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) |
| 74 |
66 73
|
eqtrd |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) ) → 𝑦 = ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) |
| 75 |
65 74
|
oveq12d |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) ) → ( 𝑥 + 𝑦 ) = ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) ) |
| 76 |
75 65
|
oveq12d |
⊢ ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = ( 𝑣 ⊕ 𝑧 ) ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) − 𝑢 ) ) |
| 77 |
23
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ⊕ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 78 |
77 45 46
|
fovcdmd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑣 ⊕ 𝑧 ) ∈ 𝐵 ) |
| 79 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) − 𝑢 ) ∈ V ) |
| 80 |
57 76 44 78 79
|
ovmpod |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) − 𝑣 ) ) − 𝑢 ) ) |
| 81 |
56 64 80
|
3eqtr4d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 82 |
81
|
anasss |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 83 |
82
|
ralrimivva |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 84 |
42 83
|
jca |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 0g ‘ 𝑀 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) |
| 85 |
84
|
ralrimiva |
⊢ ( 𝑀 ∈ Grp → ∀ 𝑧 ∈ 𝐵 ( ( ( 0g ‘ 𝑀 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) |
| 86 |
1 2 30
|
isga |
⊢ ( ⊕ ∈ ( 𝑀 GrpAct 𝐵 ) ↔ ( ( 𝑀 ∈ Grp ∧ 𝐵 ∈ V ) ∧ ( ⊕ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( ( 0g ‘ 𝑀 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 + 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) ) ) |
| 87 |
5 7 23 85 86
|
syl22anbrc |
⊢ ( 𝑀 ∈ Grp → ⊕ ∈ ( 𝑀 GrpAct 𝐵 ) ) |