Metamath Proof Explorer


Theorem conjga

Description: Group conjugation induces a group action. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses cntrval2.1 𝐵 = ( Base ‘ 𝑀 )
cntrval2.2 + = ( +g𝑀 )
cntrval2.3 = ( -g𝑀 )
cntrval2.4 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) )
Assertion conjga ( 𝑀 ∈ Grp → ∈ ( 𝑀 GrpAct 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cntrval2.1 𝐵 = ( Base ‘ 𝑀 )
2 cntrval2.2 + = ( +g𝑀 )
3 cntrval2.3 = ( -g𝑀 )
4 cntrval2.4 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) )
5 id ( 𝑀 ∈ Grp → 𝑀 ∈ Grp )
6 1 fvexi 𝐵 ∈ V
7 6 a1i ( 𝑀 ∈ Grp → 𝐵 ∈ V )
8 5 adantr ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → 𝑀 ∈ Grp )
9 xp1st ( 𝑧 ∈ ( 𝐵 × 𝐵 ) → ( 1st𝑧 ) ∈ 𝐵 )
10 9 adantl ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st𝑧 ) ∈ 𝐵 )
11 xp2nd ( 𝑧 ∈ ( 𝐵 × 𝐵 ) → ( 2nd𝑧 ) ∈ 𝐵 )
12 11 adantl ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd𝑧 ) ∈ 𝐵 )
13 1 2 8 10 12 grpcld ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) ∈ 𝐵 )
14 1 3 8 13 10 grpsubcld ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ ( 𝐵 × 𝐵 ) ) → ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) ( 1st𝑧 ) ) ∈ 𝐵 )
15 vex 𝑥 ∈ V
16 vex 𝑦 ∈ V
17 15 16 op1std ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑧 ) = 𝑥 )
18 15 16 op2ndd ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑧 ) = 𝑦 )
19 17 18 oveq12d ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) = ( 𝑥 + 𝑦 ) )
20 19 17 oveq12d ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) ( 1st𝑧 ) ) = ( ( 𝑥 + 𝑦 ) 𝑥 ) )
21 20 mpompt ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) ( 1st𝑧 ) ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) )
22 4 21 eqtr4i = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( ( ( 1st𝑧 ) + ( 2nd𝑧 ) ) ( 1st𝑧 ) ) )
23 14 22 fmptd ( 𝑀 ∈ Grp → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
24 4 a1i ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) ) )
25 simplr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑥 = ( 0g𝑀 ) )
26 simpr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 )
27 25 26 oveq12d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( 𝑥 + 𝑦 ) = ( ( 0g𝑀 ) + 𝑧 ) )
28 27 25 oveq12d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = ( ( ( 0g𝑀 ) + 𝑧 ) ( 0g𝑀 ) ) )
29 5 ad3antrrr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑀 ∈ Grp )
30 eqid ( 0g𝑀 ) = ( 0g𝑀 )
31 1 30 grpidcl ( 𝑀 ∈ Grp → ( 0g𝑀 ) ∈ 𝐵 )
32 31 ad3antrrr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( 0g𝑀 ) ∈ 𝐵 )
33 simpllr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → 𝑧𝐵 )
34 1 2 29 32 33 grpcld ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 0g𝑀 ) + 𝑧 ) ∈ 𝐵 )
35 1 30 3 grpsubid1 ( ( 𝑀 ∈ Grp ∧ ( ( 0g𝑀 ) + 𝑧 ) ∈ 𝐵 ) → ( ( ( 0g𝑀 ) + 𝑧 ) ( 0g𝑀 ) ) = ( ( 0g𝑀 ) + 𝑧 ) )
36 29 34 35 syl2anc ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( ( 0g𝑀 ) + 𝑧 ) ( 0g𝑀 ) ) = ( ( 0g𝑀 ) + 𝑧 ) )
37 1 2 30 29 33 grplidd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 0g𝑀 ) + 𝑧 ) = 𝑧 )
38 28 36 37 3eqtrd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑥 = ( 0g𝑀 ) ) ∧ 𝑦 = 𝑧 ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = 𝑧 )
39 38 anasss ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ ( 𝑥 = ( 0g𝑀 ) ∧ 𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = 𝑧 )
40 31 adantr ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → ( 0g𝑀 ) ∈ 𝐵 )
41 simpr ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → 𝑧𝐵 )
42 24 39 40 41 41 ovmpod ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → ( ( 0g𝑀 ) 𝑧 ) = 𝑧 )
43 5 ad3antrrr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → 𝑀 ∈ Grp )
44 simplr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → 𝑢𝐵 )
45 simpr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → 𝑣𝐵 )
46 simpllr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → 𝑧𝐵 )
47 1 2 43 44 45 46 grpassd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( 𝑢 + 𝑣 ) + 𝑧 ) = ( 𝑢 + ( 𝑣 + 𝑧 ) ) )
48 47 oveq1d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) ( 𝑢 + 𝑣 ) ) = ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) ( 𝑢 + 𝑣 ) ) )
49 1 2 43 45 46 grpcld ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑣 + 𝑧 ) ∈ 𝐵 )
50 1 2 43 44 49 grpcld ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑢 + ( 𝑣 + 𝑧 ) ) ∈ 𝐵 )
51 1 2 3 grpsubsub4 ( ( 𝑀 ∈ Grp ∧ ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) ∈ 𝐵𝑣𝐵𝑢𝐵 ) ) → ( ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) 𝑣 ) 𝑢 ) = ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) ( 𝑢 + 𝑣 ) ) )
52 43 50 45 44 51 syl13anc ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) 𝑣 ) 𝑢 ) = ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) ( 𝑢 + 𝑣 ) ) )
53 1 2 3 grpaddsubass ( ( 𝑀 ∈ Grp ∧ ( 𝑢𝐵 ∧ ( 𝑣 + 𝑧 ) ∈ 𝐵𝑣𝐵 ) ) → ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) 𝑣 ) = ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) )
54 43 44 49 45 53 syl13anc ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) 𝑣 ) = ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) )
55 54 oveq1d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( ( 𝑢 + ( 𝑣 + 𝑧 ) ) 𝑣 ) 𝑢 ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) 𝑢 ) )
56 48 52 55 3eqtr2d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) ( 𝑢 + 𝑣 ) ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) 𝑢 ) )
57 4 a1i ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) ) )
58 simprl ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → 𝑥 = ( 𝑢 + 𝑣 ) )
59 simprr ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → 𝑦 = 𝑧 )
60 58 59 oveq12d ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → ( 𝑥 + 𝑦 ) = ( ( 𝑢 + 𝑣 ) + 𝑧 ) )
61 60 58 oveq12d ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = ( 𝑢 + 𝑣 ) ∧ 𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) ( 𝑢 + 𝑣 ) ) )
62 1 2 43 44 45 grpcld ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑢 + 𝑣 ) ∈ 𝐵 )
63 ovexd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) ( 𝑢 + 𝑣 ) ) ∈ V )
64 57 61 62 46 63 ovmpod ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( ( ( 𝑢 + 𝑣 ) + 𝑧 ) ( 𝑢 + 𝑣 ) ) )
65 simprl ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑢𝑦 = ( 𝑣 𝑧 ) ) ) → 𝑥 = 𝑢 )
66 simprr ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑢𝑦 = ( 𝑣 𝑧 ) ) ) → 𝑦 = ( 𝑣 𝑧 ) )
67 simprl ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑣𝑦 = 𝑧 ) ) → 𝑥 = 𝑣 )
68 simprr ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑣𝑦 = 𝑧 ) ) → 𝑦 = 𝑧 )
69 67 68 oveq12d ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑣𝑦 = 𝑧 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑣 + 𝑧 ) )
70 69 67 oveq12d ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑣𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = ( ( 𝑣 + 𝑧 ) 𝑣 ) )
71 ovexd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( 𝑣 + 𝑧 ) 𝑣 ) ∈ V )
72 57 70 45 46 71 ovmpod ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑣 𝑧 ) = ( ( 𝑣 + 𝑧 ) 𝑣 ) )
73 72 adantr ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑢𝑦 = ( 𝑣 𝑧 ) ) ) → ( 𝑣 𝑧 ) = ( ( 𝑣 + 𝑧 ) 𝑣 ) )
74 66 73 eqtrd ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑢𝑦 = ( 𝑣 𝑧 ) ) ) → 𝑦 = ( ( 𝑣 + 𝑧 ) 𝑣 ) )
75 65 74 oveq12d ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑢𝑦 = ( 𝑣 𝑧 ) ) ) → ( 𝑥 + 𝑦 ) = ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) )
76 75 65 oveq12d ( ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ ( 𝑥 = 𝑢𝑦 = ( 𝑣 𝑧 ) ) ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) 𝑢 ) )
77 23 ad3antrrr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
78 77 45 46 fovcdmd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑣 𝑧 ) ∈ 𝐵 )
79 ovexd ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) 𝑢 ) ∈ V )
80 57 76 44 78 79 ovmpod ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑢 ( 𝑣 𝑧 ) ) = ( ( 𝑢 + ( ( 𝑣 + 𝑧 ) 𝑣 ) ) 𝑢 ) )
81 56 64 80 3eqtr4d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( 𝑢 ( 𝑣 𝑧 ) ) )
82 81 anasss ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ ( 𝑢𝐵𝑣𝐵 ) ) → ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( 𝑢 ( 𝑣 𝑧 ) ) )
83 82 ralrimivva ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → ∀ 𝑢𝐵𝑣𝐵 ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( 𝑢 ( 𝑣 𝑧 ) ) )
84 42 83 jca ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → ( ( ( 0g𝑀 ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢𝐵𝑣𝐵 ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( 𝑢 ( 𝑣 𝑧 ) ) ) )
85 84 ralrimiva ( 𝑀 ∈ Grp → ∀ 𝑧𝐵 ( ( ( 0g𝑀 ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢𝐵𝑣𝐵 ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( 𝑢 ( 𝑣 𝑧 ) ) ) )
86 1 2 30 isga ( ∈ ( 𝑀 GrpAct 𝐵 ) ↔ ( ( 𝑀 ∈ Grp ∧ 𝐵 ∈ V ) ∧ ( : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ ∀ 𝑧𝐵 ( ( ( 0g𝑀 ) 𝑧 ) = 𝑧 ∧ ∀ 𝑢𝐵𝑣𝐵 ( ( 𝑢 + 𝑣 ) 𝑧 ) = ( 𝑢 ( 𝑣 𝑧 ) ) ) ) ) )
87 5 7 23 85 86 syl22anbrc ( 𝑀 ∈ Grp → ∈ ( 𝑀 GrpAct 𝐵 ) )