| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrval2.1 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntrval2.2 |
⊢ + = ( +g ‘ 𝑀 ) |
| 3 |
|
cntrval2.3 |
⊢ − = ( -g ‘ 𝑀 ) |
| 4 |
|
cntrval2.4 |
⊢ ⊕ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) |
| 5 |
|
cntrval2.5 |
⊢ 𝑍 = ( Cntr ‘ 𝑀 ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑀 ∈ Grp ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 9 |
1 2 6 7 8
|
grpcld |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 + 𝑧 ) ∈ 𝐵 ) |
| 10 |
1 3 6 9 7
|
grpsubcld |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 + 𝑧 ) − 𝑝 ) ∈ 𝐵 ) |
| 11 |
1 2
|
grprcan |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) ) → ( ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ↔ ( ( 𝑝 + 𝑧 ) − 𝑝 ) = 𝑧 ) ) |
| 12 |
6 10 8 7 11
|
syl13anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ↔ ( ( 𝑝 + 𝑧 ) − 𝑝 ) = 𝑧 ) ) |
| 13 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑝 + 𝑧 ) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) = ( 𝑝 + 𝑧 ) ) |
| 14 |
6 9 7 13
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) = ( 𝑝 + 𝑧 ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑧 + 𝑝 ) = ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) ↔ ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ) ) |
| 16 |
|
eqcom |
⊢ ( ( 𝑧 + 𝑝 ) = ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) ↔ ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ) |
| 17 |
15 16
|
bitr3di |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ↔ ( ( ( 𝑝 + 𝑧 ) − 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ) ) |
| 18 |
4
|
a1i |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ⊕ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 + 𝑦 ) − 𝑥 ) ) ) |
| 19 |
|
simprl |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑧 ) ) → 𝑥 = 𝑝 ) |
| 20 |
|
simprr |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 21 |
19 20
|
oveq12d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑧 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑝 + 𝑧 ) ) |
| 22 |
21 19
|
oveq12d |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( 𝑝 + 𝑧 ) − 𝑝 ) ) |
| 23 |
|
ovexd |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 + 𝑧 ) − 𝑝 ) ∈ V ) |
| 24 |
18 22 7 8 23
|
ovmpod |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ⊕ 𝑧 ) = ( ( 𝑝 + 𝑧 ) − 𝑝 ) ) |
| 25 |
24
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 ⊕ 𝑧 ) = 𝑧 ↔ ( ( 𝑝 + 𝑧 ) − 𝑝 ) = 𝑧 ) ) |
| 26 |
12 17 25
|
3bitr4d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ↔ ( 𝑝 ⊕ 𝑧 ) = 𝑧 ) ) |
| 27 |
26
|
ralbidva |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐵 ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ↔ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 ) ) |
| 28 |
27
|
pm5.32da |
⊢ ( 𝑀 ∈ Grp → ( ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 ) ) ) |
| 29 |
1 2 5
|
elcntr |
⊢ ( 𝑧 ∈ 𝑍 ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ) ) |
| 30 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 } ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 ) ) |
| 31 |
28 29 30
|
3bitr4g |
⊢ ( 𝑀 ∈ Grp → ( 𝑧 ∈ 𝑍 ↔ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 } ) ) |
| 32 |
1 2 3 4
|
conjga |
⊢ ( 𝑀 ∈ Grp → ⊕ ∈ ( 𝑀 GrpAct 𝐵 ) ) |
| 33 |
1 32
|
fxpgaval |
⊢ ( 𝑀 ∈ Grp → ( 𝐵 FixPts ⊕ ) = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 } ) |
| 34 |
33
|
eleq2d |
⊢ ( 𝑀 ∈ Grp → ( 𝑧 ∈ ( 𝐵 FixPts ⊕ ) ↔ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑝 ∈ 𝐵 ( 𝑝 ⊕ 𝑧 ) = 𝑧 } ) ) |
| 35 |
31 34
|
bitr4d |
⊢ ( 𝑀 ∈ Grp → ( 𝑧 ∈ 𝑍 ↔ 𝑧 ∈ ( 𝐵 FixPts ⊕ ) ) ) |
| 36 |
35
|
eqrdv |
⊢ ( 𝑀 ∈ Grp → 𝑍 = ( 𝐵 FixPts ⊕ ) ) |