Metamath Proof Explorer


Theorem cntrval2

Description: Express the center Z of a group M as the set of fixed points of the conjugation operation .(+) . (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses cntrval2.1 𝐵 = ( Base ‘ 𝑀 )
cntrval2.2 + = ( +g𝑀 )
cntrval2.3 = ( -g𝑀 )
cntrval2.4 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) )
cntrval2.5 𝑍 = ( Cntr ‘ 𝑀 )
Assertion cntrval2 ( 𝑀 ∈ Grp → 𝑍 = ( 𝐵 FixPts ) )

Proof

Step Hyp Ref Expression
1 cntrval2.1 𝐵 = ( Base ‘ 𝑀 )
2 cntrval2.2 + = ( +g𝑀 )
3 cntrval2.3 = ( -g𝑀 )
4 cntrval2.4 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) )
5 cntrval2.5 𝑍 = ( Cntr ‘ 𝑀 )
6 simpll ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → 𝑀 ∈ Grp )
7 simpr ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → 𝑝𝐵 )
8 simplr ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → 𝑧𝐵 )
9 1 2 6 7 8 grpcld ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( 𝑝 + 𝑧 ) ∈ 𝐵 )
10 1 3 6 9 7 grpsubcld ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( 𝑝 + 𝑧 ) 𝑝 ) ∈ 𝐵 )
11 1 2 grprcan ( ( 𝑀 ∈ Grp ∧ ( ( ( 𝑝 + 𝑧 ) 𝑝 ) ∈ 𝐵𝑧𝐵𝑝𝐵 ) ) → ( ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ↔ ( ( 𝑝 + 𝑧 ) 𝑝 ) = 𝑧 ) )
12 6 10 8 7 11 syl13anc ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ↔ ( ( 𝑝 + 𝑧 ) 𝑝 ) = 𝑧 ) )
13 1 2 3 grpnpcan ( ( 𝑀 ∈ Grp ∧ ( 𝑝 + 𝑧 ) ∈ 𝐵𝑝𝐵 ) → ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) = ( 𝑝 + 𝑧 ) )
14 6 9 7 13 syl3anc ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) = ( 𝑝 + 𝑧 ) )
15 14 eqeq2d ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( 𝑧 + 𝑝 ) = ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) ↔ ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ) )
16 eqcom ( ( 𝑧 + 𝑝 ) = ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) ↔ ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) )
17 15 16 bitr3di ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ↔ ( ( ( 𝑝 + 𝑧 ) 𝑝 ) + 𝑝 ) = ( 𝑧 + 𝑝 ) ) )
18 4 a1i ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 + 𝑦 ) 𝑥 ) ) )
19 simprl ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) ∧ ( 𝑥 = 𝑝𝑦 = 𝑧 ) ) → 𝑥 = 𝑝 )
20 simprr ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) ∧ ( 𝑥 = 𝑝𝑦 = 𝑧 ) ) → 𝑦 = 𝑧 )
21 19 20 oveq12d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) ∧ ( 𝑥 = 𝑝𝑦 = 𝑧 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑝 + 𝑧 ) )
22 21 19 oveq12d ( ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) ∧ ( 𝑥 = 𝑝𝑦 = 𝑧 ) ) → ( ( 𝑥 + 𝑦 ) 𝑥 ) = ( ( 𝑝 + 𝑧 ) 𝑝 ) )
23 ovexd ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( 𝑝 + 𝑧 ) 𝑝 ) ∈ V )
24 18 22 7 8 23 ovmpod ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( 𝑝 𝑧 ) = ( ( 𝑝 + 𝑧 ) 𝑝 ) )
25 24 eqeq1d ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( 𝑝 𝑧 ) = 𝑧 ↔ ( ( 𝑝 + 𝑧 ) 𝑝 ) = 𝑧 ) )
26 12 17 25 3bitr4d ( ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) ∧ 𝑝𝐵 ) → ( ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ↔ ( 𝑝 𝑧 ) = 𝑧 ) )
27 26 ralbidva ( ( 𝑀 ∈ Grp ∧ 𝑧𝐵 ) → ( ∀ 𝑝𝐵 ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ↔ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 ) )
28 27 pm5.32da ( 𝑀 ∈ Grp → ( ( 𝑧𝐵 ∧ ∀ 𝑝𝐵 ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ) ↔ ( 𝑧𝐵 ∧ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 ) ) )
29 1 2 5 elcntr ( 𝑧𝑍 ↔ ( 𝑧𝐵 ∧ ∀ 𝑝𝐵 ( 𝑧 + 𝑝 ) = ( 𝑝 + 𝑧 ) ) )
30 rabid ( 𝑧 ∈ { 𝑧𝐵 ∣ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 } ↔ ( 𝑧𝐵 ∧ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 ) )
31 28 29 30 3bitr4g ( 𝑀 ∈ Grp → ( 𝑧𝑍𝑧 ∈ { 𝑧𝐵 ∣ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 } ) )
32 1 2 3 4 conjga ( 𝑀 ∈ Grp → ∈ ( 𝑀 GrpAct 𝐵 ) )
33 1 32 fxpgaval ( 𝑀 ∈ Grp → ( 𝐵 FixPts ) = { 𝑧𝐵 ∣ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 } )
34 33 eleq2d ( 𝑀 ∈ Grp → ( 𝑧 ∈ ( 𝐵 FixPts ) ↔ 𝑧 ∈ { 𝑧𝐵 ∣ ∀ 𝑝𝐵 ( 𝑝 𝑧 ) = 𝑧 } ) )
35 31 34 bitr4d ( 𝑀 ∈ Grp → ( 𝑧𝑍𝑧 ∈ ( 𝐵 FixPts ) ) )
36 35 eqrdv ( 𝑀 ∈ Grp → 𝑍 = ( 𝐵 FixPts ) )