| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpsubm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
fxpsubg.c |
⊢ 𝐶 = ( Base ‘ 𝑊 ) |
| 3 |
|
fxpsubm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 ↦ ( 𝑝 𝐴 𝑥 ) ) |
| 4 |
|
fxpsubg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 5 |
|
fxpsubm.1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → ( 𝑝 𝐴 𝑥 ) = ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝑝 𝐴 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ) |
| 8 |
3 7
|
eqtrid |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑝 = ( 0g ‘ 𝐺 ) → ( 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ↔ ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ∈ ( 𝑊 MndHom 𝑊 ) ) ) |
| 10 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐵 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 11 |
|
gagrp |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐺 ∈ Grp ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 14 |
1 13
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 15 |
12 14
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 16 |
9 10 15
|
rspcdva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 17 |
|
mhmrcl1 |
⊢ ( ( 𝑥 ∈ 𝐶 ↦ ( ( 0g ‘ 𝐺 ) 𝐴 𝑥 ) ) ∈ ( 𝑊 MndHom 𝑊 ) → 𝑊 ∈ Mnd ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 19 |
|
gaset |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐶 ∈ V ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 21 |
20 4
|
fxpss |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝑊 ) → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 ( 0g ‘ 𝑊 ) ) ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 24 |
2 23
|
mndidcl |
⊢ ( 𝑊 ∈ Mnd → ( 0g ‘ 𝑊 ) ∈ 𝐶 ) |
| 25 |
18 24
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ 𝐶 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 0g ‘ 𝑊 ) ∈ 𝐶 ) |
| 27 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( 0g ‘ 𝑊 ) ) ∈ V ) |
| 28 |
3 22 26 27
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝑊 ) ) = ( 𝑝 𝐴 ( 0g ‘ 𝑊 ) ) ) |
| 29 |
23 23
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) → ( 𝐹 ‘ ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 30 |
5 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 31 |
28 30
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 33 |
1 4 25
|
isfxp |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑊 ) ∈ ( 𝐶 FixPts 𝐴 ) ↔ ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) ) |
| 34 |
32 33
|
mpbird |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 35 |
5
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 36 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 38 |
36 37
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝑧 ∈ 𝐶 ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
| 40 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ) |
| 41 |
40
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝑦 ∈ 𝐶 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑦 ∈ 𝐶 ) |
| 43 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 44 |
2 43 43
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ∧ 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 45 |
35 39 42 44
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) ) |
| 47 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝑊 ∈ Mnd ) |
| 48 |
2 43 47 38 41
|
mndcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝐶 ) |
| 49 |
48
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ 𝐶 ) |
| 50 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) ∈ V ) |
| 51 |
3 46 49 50
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 𝑝 𝐴 ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑧 ) ) |
| 53 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑧 ) ∈ V ) |
| 54 |
3 52 39 53
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑝 𝐴 𝑧 ) ) |
| 55 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 57 |
37
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 58 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 59 |
1 56 57 58
|
fxpgaeq |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑧 ) = 𝑧 ) |
| 60 |
54 59
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 61 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑦 ) ) |
| 62 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑦 ) ∈ V ) |
| 63 |
3 61 42 62
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑝 𝐴 𝑦 ) ) |
| 64 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 65 |
1 56 64 58
|
fxpgaeq |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑦 ) = 𝑦 ) |
| 66 |
63 65
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) |
| 67 |
60 66
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 68 |
45 51 67
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 69 |
68
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 70 |
1 55 48
|
isfxp |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐶 FixPts 𝐴 ) ↔ ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ) ) |
| 71 |
69 70
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) ∧ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ) → ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 72 |
71
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) → ∀ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 73 |
72
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ∀ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 74 |
2 23 43
|
issubm |
⊢ ( 𝑊 ∈ Mnd → ( ( 𝐶 FixPts 𝐴 ) ∈ ( SubMnd ‘ 𝑊 ) ↔ ( ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ∧ ( 0g ‘ 𝑊 ) ∈ ( 𝐶 FixPts 𝐴 ) ∧ ∀ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ∀ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐶 FixPts 𝐴 ) ) ) ) |
| 75 |
74
|
biimpar |
⊢ ( ( 𝑊 ∈ Mnd ∧ ( ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ∧ ( 0g ‘ 𝑊 ) ∈ ( 𝐶 FixPts 𝐴 ) ∧ ∀ 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ∀ 𝑦 ∈ ( 𝐶 FixPts 𝐴 ) ( 𝑧 ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( 𝐶 FixPts 𝐴 ) ) ) → ( 𝐶 FixPts 𝐴 ) ∈ ( SubMnd ‘ 𝑊 ) ) |
| 76 |
18 21 34 73 75
|
syl13anc |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ∈ ( SubMnd ‘ 𝑊 ) ) |