Metamath Proof Explorer


Theorem mndcld

Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndcld.1 𝐵 = ( Base ‘ 𝐺 )
mndcld.2 + = ( +g𝐺 )
mndcld.3 ( 𝜑𝐺 ∈ Mnd )
mndcld.4 ( 𝜑𝑋𝐵 )
mndcld.5 ( 𝜑𝑌𝐵 )
Assertion mndcld ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mndcld.1 𝐵 = ( Base ‘ 𝐺 )
2 mndcld.2 + = ( +g𝐺 )
3 mndcld.3 ( 𝜑𝐺 ∈ Mnd )
4 mndcld.4 ( 𝜑𝑋𝐵 )
5 mndcld.5 ( 𝜑𝑌𝐵 )
6 1 2 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
7 3 4 5 6 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 )