Metamath Proof Explorer
Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
mndassd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
mndassd.2 |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
mndassd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
|
|
mndassd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
mndassd.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
mndassd.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
Assertion |
mndassd |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mndassd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mndassd.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
mndassd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
4 |
|
mndassd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
mndassd.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
mndassd.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
1 2
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
8 |
3 4 5 6 7
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |