Metamath Proof Explorer


Theorem mndassd

Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndassd.1 B = Base G
mndassd.2 + ˙ = + G
mndassd.3 φ G Mnd
mndassd.4 φ X B
mndassd.5 φ Y B
mndassd.6 φ Z B
Assertion mndassd φ X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 mndassd.1 B = Base G
2 mndassd.2 + ˙ = + G
3 mndassd.3 φ G Mnd
4 mndassd.4 φ X B
5 mndassd.5 φ Y B
6 mndassd.6 φ Z B
7 1 2 mndass G Mnd X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z
8 3 4 5 6 7 syl13anc φ X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z