Metamath Proof Explorer


Theorem mndlrinv

Description: In a monoid, if an element X has both a left inverse M and a right inverse N , they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndlrinv.b B = Base E
mndlrinv.z 0 ˙ = 0 E
mndlrinv.p + ˙ = + E
mndlrinv.e φ E Mnd
mndlrinv.x φ X B
mndlrinv.m φ M B
mndlrinv.n φ N B
mndlrinv.1 φ M + ˙ X = 0 ˙
mndlrinv.2 φ X + ˙ N = 0 ˙
Assertion mndlrinv φ M = N

Proof

Step Hyp Ref Expression
1 mndlrinv.b B = Base E
2 mndlrinv.z 0 ˙ = 0 E
3 mndlrinv.p + ˙ = + E
4 mndlrinv.e φ E Mnd
5 mndlrinv.x φ X B
6 mndlrinv.m φ M B
7 mndlrinv.n φ N B
8 mndlrinv.1 φ M + ˙ X = 0 ˙
9 mndlrinv.2 φ X + ˙ N = 0 ˙
10 1 3 4 6 5 7 mndassd φ M + ˙ X + ˙ N = M + ˙ X + ˙ N
11 8 oveq1d φ M + ˙ X + ˙ N = 0 ˙ + ˙ N
12 9 oveq2d φ M + ˙ X + ˙ N = M + ˙ 0 ˙
13 10 11 12 3eqtr3rd φ M + ˙ 0 ˙ = 0 ˙ + ˙ N
14 1 3 2 mndrid E Mnd M B M + ˙ 0 ˙ = M
15 4 6 14 syl2anc φ M + ˙ 0 ˙ = M
16 1 3 2 mndlid E Mnd N B 0 ˙ + ˙ N = N
17 4 7 16 syl2anc φ 0 ˙ + ˙ N = N
18 13 15 17 3eqtr3d φ M = N