Metamath Proof Explorer


Theorem mndlrinv

Description: In a monoid, if an element X has both a left inverse M and a right inverse N , they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndlrinv.b 𝐵 = ( Base ‘ 𝐸 )
mndlrinv.z 0 = ( 0g𝐸 )
mndlrinv.p + = ( +g𝐸 )
mndlrinv.e ( 𝜑𝐸 ∈ Mnd )
mndlrinv.x ( 𝜑𝑋𝐵 )
mndlrinv.m ( 𝜑𝑀𝐵 )
mndlrinv.n ( 𝜑𝑁𝐵 )
mndlrinv.1 ( 𝜑 → ( 𝑀 + 𝑋 ) = 0 )
mndlrinv.2 ( 𝜑 → ( 𝑋 + 𝑁 ) = 0 )
Assertion mndlrinv ( 𝜑𝑀 = 𝑁 )

Proof

Step Hyp Ref Expression
1 mndlrinv.b 𝐵 = ( Base ‘ 𝐸 )
2 mndlrinv.z 0 = ( 0g𝐸 )
3 mndlrinv.p + = ( +g𝐸 )
4 mndlrinv.e ( 𝜑𝐸 ∈ Mnd )
5 mndlrinv.x ( 𝜑𝑋𝐵 )
6 mndlrinv.m ( 𝜑𝑀𝐵 )
7 mndlrinv.n ( 𝜑𝑁𝐵 )
8 mndlrinv.1 ( 𝜑 → ( 𝑀 + 𝑋 ) = 0 )
9 mndlrinv.2 ( 𝜑 → ( 𝑋 + 𝑁 ) = 0 )
10 1 3 4 6 5 7 mndassd ( 𝜑 → ( ( 𝑀 + 𝑋 ) + 𝑁 ) = ( 𝑀 + ( 𝑋 + 𝑁 ) ) )
11 8 oveq1d ( 𝜑 → ( ( 𝑀 + 𝑋 ) + 𝑁 ) = ( 0 + 𝑁 ) )
12 9 oveq2d ( 𝜑 → ( 𝑀 + ( 𝑋 + 𝑁 ) ) = ( 𝑀 + 0 ) )
13 10 11 12 3eqtr3rd ( 𝜑 → ( 𝑀 + 0 ) = ( 0 + 𝑁 ) )
14 1 3 2 mndrid ( ( 𝐸 ∈ Mnd ∧ 𝑀𝐵 ) → ( 𝑀 + 0 ) = 𝑀 )
15 4 6 14 syl2anc ( 𝜑 → ( 𝑀 + 0 ) = 𝑀 )
16 1 3 2 mndlid ( ( 𝐸 ∈ Mnd ∧ 𝑁𝐵 ) → ( 0 + 𝑁 ) = 𝑁 )
17 4 7 16 syl2anc ( 𝜑 → ( 0 + 𝑁 ) = 𝑁 )
18 13 15 17 3eqtr3d ( 𝜑𝑀 = 𝑁 )