Step |
Hyp |
Ref |
Expression |
1 |
|
mndlrinv.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
mndlrinv.z |
⊢ 0 = ( 0g ‘ 𝐸 ) |
3 |
|
mndlrinv.p |
⊢ + = ( +g ‘ 𝐸 ) |
4 |
|
mndlrinv.e |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
5 |
|
mndlrinv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
mndlrinv.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
7 |
|
mndlrinv.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
8 |
|
mndlrinv.1 |
⊢ ( 𝜑 → ( 𝑀 + 𝑋 ) = 0 ) |
9 |
|
mndlrinv.2 |
⊢ ( 𝜑 → ( 𝑋 + 𝑁 ) = 0 ) |
10 |
1 3 4 6 5 7
|
mndassd |
⊢ ( 𝜑 → ( ( 𝑀 + 𝑋 ) + 𝑁 ) = ( 𝑀 + ( 𝑋 + 𝑁 ) ) ) |
11 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 + 𝑋 ) + 𝑁 ) = ( 0 + 𝑁 ) ) |
12 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 + ( 𝑋 + 𝑁 ) ) = ( 𝑀 + 0 ) ) |
13 |
10 11 12
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑀 + 0 ) = ( 0 + 𝑁 ) ) |
14 |
1 3 2
|
mndrid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑀 ∈ 𝐵 ) → ( 𝑀 + 0 ) = 𝑀 ) |
15 |
4 6 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 + 0 ) = 𝑀 ) |
16 |
1 3 2
|
mndlid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑁 ∈ 𝐵 ) → ( 0 + 𝑁 ) = 𝑁 ) |
17 |
4 7 16
|
syl2anc |
⊢ ( 𝜑 → ( 0 + 𝑁 ) = 𝑁 ) |
18 |
13 15 17
|
3eqtr3d |
⊢ ( 𝜑 → 𝑀 = 𝑁 ) |