| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndlrinv.b | ⊢ 𝐵  =  ( Base ‘ 𝐸 ) | 
						
							| 2 |  | mndlrinv.z | ⊢  0   =  ( 0g ‘ 𝐸 ) | 
						
							| 3 |  | mndlrinv.p | ⊢  +   =  ( +g ‘ 𝐸 ) | 
						
							| 4 |  | mndlrinv.e | ⊢ ( 𝜑  →  𝐸  ∈  Mnd ) | 
						
							| 5 |  | mndlrinv.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑧  =  𝑢  →  ( 𝑋  +  𝑧 )  =  ( 𝑋  +  𝑢 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝑋  +  𝑧 )  =   0   ↔  ( 𝑋  +  𝑢 )  =   0  ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑧  =  𝑢  →  ( 𝑧  +  𝑋 )  =  ( 𝑢  +  𝑋 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝑧  +  𝑋 )  =   0   ↔  ( 𝑢  +  𝑋 )  =   0  ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( 𝑧  =  𝑢  →  ( ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  )  ↔  ( ( 𝑋  +  𝑢 )  =   0   ∧  ( 𝑢  +  𝑋 )  =   0  ) ) ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  𝑢  ∈  𝐵 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  ( 𝑋  +  𝑢 )  =   0  ) | 
						
							| 13 | 4 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  𝐸  ∈  Mnd ) | 
						
							| 14 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  𝑋  ∈  𝐵 ) | 
						
							| 15 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  𝑣  ∈  𝐵 ) | 
						
							| 16 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  ( 𝑣  +  𝑋 )  =   0  ) | 
						
							| 17 | 1 2 3 13 14 15 11 16 12 | mndlrinv | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  𝑣  =  𝑢 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  ( 𝑣  +  𝑋 )  =  ( 𝑢  +  𝑋 ) ) | 
						
							| 19 | 18 16 | eqtr3d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  ( 𝑢  +  𝑋 )  =   0  ) | 
						
							| 20 | 12 19 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  ( ( 𝑋  +  𝑢 )  =   0   ∧  ( 𝑢  +  𝑋 )  =   0  ) ) | 
						
							| 21 | 10 11 20 | rspcedvdw | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝑋  +  𝑢 )  =   0  )  →  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 22 | 21 | r19.29an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑣  +  𝑋 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0  )  →  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 23 | 22 | an42ds | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0  )  ∧  𝑣  ∈  𝐵 )  ∧  ( 𝑣  +  𝑋 )  =   0  )  →  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 24 | 23 | r19.29an | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0  )  ∧  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  )  →  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 25 | 24 | anasss | ⊢ ( ( 𝜑  ∧  ( ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0   ∧  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  ) )  →  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑋  +  𝑢 )  =  ( 𝑋  +  𝑧 ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝑢  =  𝑧  →  ( ( 𝑋  +  𝑢 )  =   0   ↔  ( 𝑋  +  𝑧 )  =   0  ) ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 29 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  ( 𝑋  +  𝑧 )  =   0  ) | 
						
							| 30 | 27 28 29 | rspcedvdw | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0  ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑣  =  𝑧  →  ( 𝑣  +  𝑋 )  =  ( 𝑧  +  𝑋 ) ) | 
						
							| 32 | 31 | eqeq1d | ⊢ ( 𝑣  =  𝑧  →  ( ( 𝑣  +  𝑋 )  =   0   ↔  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 33 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  ( 𝑧  +  𝑋 )  =   0  ) | 
						
							| 34 | 32 28 33 | rspcedvdw | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  ) | 
						
							| 35 | 30 34 | jca | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  ( ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0   ∧  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  ) ) | 
						
							| 36 | 35 | r19.29an | ⊢ ( ( 𝜑  ∧  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) )  →  ( ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0   ∧  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  ) ) | 
						
							| 37 | 25 36 | impbida | ⊢ ( 𝜑  →  ( ( ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0   ∧  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  )  ↔  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑋  +  𝑦 )  =  ( 𝑋  +  𝑧 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑋  +  𝑦 )  =   0   ↔  ( 𝑋  +  𝑧 )  =   0  ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  +  𝑋 )  =  ( 𝑧  +  𝑋 ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦  +  𝑋 )  =   0   ↔  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 42 | 39 41 | anbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( 𝑋  +  𝑦 )  =   0   ∧  ( 𝑦  +  𝑋 )  =   0  )  ↔  ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) ) | 
						
							| 43 | 42 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝐵 ( ( 𝑋  +  𝑦 )  =   0   ∧  ( 𝑦  +  𝑋 )  =   0  )  ↔  ∃ 𝑧  ∈  𝐵 ( ( 𝑋  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑋 )  =   0  ) ) | 
						
							| 44 | 37 43 | bitr4di | ⊢ ( 𝜑  →  ( ( ∃ 𝑢  ∈  𝐵 ( 𝑋  +  𝑢 )  =   0   ∧  ∃ 𝑣  ∈  𝐵 ( 𝑣  +  𝑋 )  =   0  )  ↔  ∃ 𝑦  ∈  𝐵 ( ( 𝑋  +  𝑦 )  =   0   ∧  ( 𝑦  +  𝑋 )  =   0  ) ) ) |