Step |
Hyp |
Ref |
Expression |
1 |
|
mndlrinv.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
mndlrinv.z |
⊢ 0 = ( 0g ‘ 𝐸 ) |
3 |
|
mndlrinv.p |
⊢ + = ( +g ‘ 𝐸 ) |
4 |
|
mndlrinv.e |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
5 |
|
mndlrinv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
oveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑋 + 𝑧 ) = ( 𝑋 + 𝑢 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑋 + 𝑧 ) = 0 ↔ ( 𝑋 + 𝑢 ) = 0 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑧 = 𝑢 → ( 𝑧 + 𝑋 ) = ( 𝑢 + 𝑋 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑧 + 𝑋 ) = 0 ↔ ( 𝑢 + 𝑋 ) = 0 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑧 = 𝑢 → ( ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ↔ ( ( 𝑋 + 𝑢 ) = 0 ∧ ( 𝑢 + 𝑋 ) = 0 ) ) ) |
11 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑢 ∈ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑋 + 𝑢 ) = 0 ) |
13 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝐸 ∈ Mnd ) |
14 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑋 ∈ 𝐵 ) |
15 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑣 ∈ 𝐵 ) |
16 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑣 + 𝑋 ) = 0 ) |
17 |
1 2 3 13 14 15 11 16 12
|
mndlrinv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → 𝑣 = 𝑢 ) |
18 |
17
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑣 + 𝑋 ) = ( 𝑢 + 𝑋 ) ) |
19 |
18 16
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( 𝑢 + 𝑋 ) = 0 ) |
20 |
12 19
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ( ( 𝑋 + 𝑢 ) = 0 ∧ ( 𝑢 + 𝑋 ) = 0 ) ) |
21 |
10 11 20
|
rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑢 ) = 0 ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) |
22 |
21
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 + 𝑋 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) |
23 |
22
|
an42ds |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑣 + 𝑋 ) = 0 ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) |
24 |
23
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) |
25 |
24
|
anasss |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) ) → ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑋 + 𝑢 ) = ( 𝑋 + 𝑧 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑋 + 𝑢 ) = 0 ↔ ( 𝑋 + 𝑧 ) = 0 ) ) |
28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → 𝑧 ∈ 𝐵 ) |
29 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → ( 𝑋 + 𝑧 ) = 0 ) |
30 |
27 28 29
|
rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ) |
31 |
|
oveq1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 + 𝑋 ) = ( 𝑧 + 𝑋 ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑣 = 𝑧 → ( ( 𝑣 + 𝑋 ) = 0 ↔ ( 𝑧 + 𝑋 ) = 0 ) ) |
33 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → ( 𝑧 + 𝑋 ) = 0 ) |
34 |
32 28 33
|
rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) |
35 |
30 34
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) ) |
36 |
35
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) ) |
37 |
25 36
|
impbida |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑧 ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑋 + 𝑦 ) = 0 ↔ ( 𝑋 + 𝑧 ) = 0 ) ) |
40 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( 𝑧 + 𝑋 ) = 0 ) ) |
42 |
39 41
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ↔ ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) ) |
43 |
42
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝑋 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) ) |
44 |
37 43
|
bitr4di |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 + 𝑢 ) = 0 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑋 ) = 0 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 + 𝑦 ) = 0 ∧ ( 𝑦 + 𝑋 ) = 0 ) ) ) |