Metamath Proof Explorer


Theorem mndlactf1

Description: If an element X of a monoid E is right-invertible, with inverse Y , then its left-translation F is injective. See also grplactf1o . Remark in chapter I. of BourbakiAlg1 p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndlactfo.b 𝐵 = ( Base ‘ 𝐸 )
mndlactfo.z 0 = ( 0g𝐸 )
mndlactfo.p + = ( +g𝐸 )
mndlactfo.f 𝐹 = ( 𝑎𝐵 ↦ ( 𝑋 + 𝑎 ) )
mndlactfo.e ( 𝜑𝐸 ∈ Mnd )
mndlactfo.x ( 𝜑𝑋𝐵 )
mndlactf1.1 ( 𝜑𝑌𝐵 )
mndlactf1.2 ( 𝜑 → ( 𝑌 + 𝑋 ) = 0 )
Assertion mndlactf1 ( 𝜑𝐹 : 𝐵1-1𝐵 )

Proof

Step Hyp Ref Expression
1 mndlactfo.b 𝐵 = ( Base ‘ 𝐸 )
2 mndlactfo.z 0 = ( 0g𝐸 )
3 mndlactfo.p + = ( +g𝐸 )
4 mndlactfo.f 𝐹 = ( 𝑎𝐵 ↦ ( 𝑋 + 𝑎 ) )
5 mndlactfo.e ( 𝜑𝐸 ∈ Mnd )
6 mndlactfo.x ( 𝜑𝑋𝐵 )
7 mndlactf1.1 ( 𝜑𝑌𝐵 )
8 mndlactf1.2 ( 𝜑 → ( 𝑌 + 𝑋 ) = 0 )
9 5 adantr ( ( 𝜑𝑎𝐵 ) → 𝐸 ∈ Mnd )
10 6 adantr ( ( 𝜑𝑎𝐵 ) → 𝑋𝐵 )
11 simpr ( ( 𝜑𝑎𝐵 ) → 𝑎𝐵 )
12 1 3 9 10 11 mndcld ( ( 𝜑𝑎𝐵 ) → ( 𝑋 + 𝑎 ) ∈ 𝐵 )
13 12 4 fmptd ( 𝜑𝐹 : 𝐵𝐵 )
14 simpr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝐹𝑖 ) = ( 𝐹𝑗 ) )
15 oveq2 ( 𝑎 = 𝑖 → ( 𝑋 + 𝑎 ) = ( 𝑋 + 𝑖 ) )
16 simpllr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → 𝑖𝐵 )
17 ovexd ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝑋 + 𝑖 ) ∈ V )
18 4 15 16 17 fvmptd3 ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝐹𝑖 ) = ( 𝑋 + 𝑖 ) )
19 oveq2 ( 𝑎 = 𝑗 → ( 𝑋 + 𝑎 ) = ( 𝑋 + 𝑗 ) )
20 simplr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → 𝑗𝐵 )
21 ovexd ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝑋 + 𝑗 ) ∈ V )
22 4 19 20 21 fvmptd3 ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) = ( 𝑋 + 𝑗 ) )
23 14 18 22 3eqtr3d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝑋 + 𝑖 ) = ( 𝑋 + 𝑗 ) )
24 23 oveq2d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝑌 + ( 𝑋 + 𝑖 ) ) = ( 𝑌 + ( 𝑋 + 𝑗 ) ) )
25 5 ad3antrrr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → 𝐸 ∈ Mnd )
26 7 ad3antrrr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → 𝑌𝐵 )
27 6 ad3antrrr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → 𝑋𝐵 )
28 1 3 25 26 27 16 mndassd ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑖 ) = ( 𝑌 + ( 𝑋 + 𝑖 ) ) )
29 1 3 25 26 27 20 mndassd ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑗 ) = ( 𝑌 + ( 𝑋 + 𝑗 ) ) )
30 24 28 29 3eqtr4d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑖 ) = ( ( 𝑌 + 𝑋 ) + 𝑗 ) )
31 8 ad3antrrr ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 𝑌 + 𝑋 ) = 0 )
32 31 oveq1d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑖 ) = ( 0 + 𝑖 ) )
33 31 oveq1d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑗 ) = ( 0 + 𝑗 ) )
34 30 32 33 3eqtr3d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 0 + 𝑖 ) = ( 0 + 𝑗 ) )
35 1 3 2 mndlid ( ( 𝐸 ∈ Mnd ∧ 𝑖𝐵 ) → ( 0 + 𝑖 ) = 𝑖 )
36 25 16 35 syl2anc ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 0 + 𝑖 ) = 𝑖 )
37 1 3 2 mndlid ( ( 𝐸 ∈ Mnd ∧ 𝑗𝐵 ) → ( 0 + 𝑗 ) = 𝑗 )
38 25 20 37 syl2anc ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → ( 0 + 𝑗 ) = 𝑗 )
39 34 36 38 3eqtr3d ( ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) ∧ ( 𝐹𝑖 ) = ( 𝐹𝑗 ) ) → 𝑖 = 𝑗 )
40 39 ex ( ( ( 𝜑𝑖𝐵 ) ∧ 𝑗𝐵 ) → ( ( 𝐹𝑖 ) = ( 𝐹𝑗 ) → 𝑖 = 𝑗 ) )
41 40 anasss ( ( 𝜑 ∧ ( 𝑖𝐵𝑗𝐵 ) ) → ( ( 𝐹𝑖 ) = ( 𝐹𝑗 ) → 𝑖 = 𝑗 ) )
42 41 ralrimivva ( 𝜑 → ∀ 𝑖𝐵𝑗𝐵 ( ( 𝐹𝑖 ) = ( 𝐹𝑗 ) → 𝑖 = 𝑗 ) )
43 dff13 ( 𝐹 : 𝐵1-1𝐵 ↔ ( 𝐹 : 𝐵𝐵 ∧ ∀ 𝑖𝐵𝑗𝐵 ( ( 𝐹𝑖 ) = ( 𝐹𝑗 ) → 𝑖 = 𝑗 ) ) )
44 13 42 43 sylanbrc ( 𝜑𝐹 : 𝐵1-1𝐵 )