Metamath Proof Explorer


Theorem mndlactf1

Description: If an element X of a monoid E is right-invertible, with inverse Y , then its left-translation F is injective. See also grplactf1o . Remark in chapter I. of BourbakiAlg1 p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndlactfo.b B = Base E
mndlactfo.z 0 ˙ = 0 E
mndlactfo.p + ˙ = + E
mndlactfo.f F = a B X + ˙ a
mndlactfo.e φ E Mnd
mndlactfo.x φ X B
mndlactf1.1 φ Y B
mndlactf1.2 φ Y + ˙ X = 0 ˙
Assertion mndlactf1 φ F : B 1-1 B

Proof

Step Hyp Ref Expression
1 mndlactfo.b B = Base E
2 mndlactfo.z 0 ˙ = 0 E
3 mndlactfo.p + ˙ = + E
4 mndlactfo.f F = a B X + ˙ a
5 mndlactfo.e φ E Mnd
6 mndlactfo.x φ X B
7 mndlactf1.1 φ Y B
8 mndlactf1.2 φ Y + ˙ X = 0 ˙
9 5 adantr φ a B E Mnd
10 6 adantr φ a B X B
11 simpr φ a B a B
12 1 3 9 10 11 mndcld φ a B X + ˙ a B
13 12 4 fmptd φ F : B B
14 simpr φ i B j B F i = F j F i = F j
15 oveq2 a = i X + ˙ a = X + ˙ i
16 simpllr φ i B j B F i = F j i B
17 ovexd φ i B j B F i = F j X + ˙ i V
18 4 15 16 17 fvmptd3 φ i B j B F i = F j F i = X + ˙ i
19 oveq2 a = j X + ˙ a = X + ˙ j
20 simplr φ i B j B F i = F j j B
21 ovexd φ i B j B F i = F j X + ˙ j V
22 4 19 20 21 fvmptd3 φ i B j B F i = F j F j = X + ˙ j
23 14 18 22 3eqtr3d φ i B j B F i = F j X + ˙ i = X + ˙ j
24 23 oveq2d φ i B j B F i = F j Y + ˙ X + ˙ i = Y + ˙ X + ˙ j
25 5 ad3antrrr φ i B j B F i = F j E Mnd
26 7 ad3antrrr φ i B j B F i = F j Y B
27 6 ad3antrrr φ i B j B F i = F j X B
28 1 3 25 26 27 16 mndassd φ i B j B F i = F j Y + ˙ X + ˙ i = Y + ˙ X + ˙ i
29 1 3 25 26 27 20 mndassd φ i B j B F i = F j Y + ˙ X + ˙ j = Y + ˙ X + ˙ j
30 24 28 29 3eqtr4d φ i B j B F i = F j Y + ˙ X + ˙ i = Y + ˙ X + ˙ j
31 8 ad3antrrr φ i B j B F i = F j Y + ˙ X = 0 ˙
32 31 oveq1d φ i B j B F i = F j Y + ˙ X + ˙ i = 0 ˙ + ˙ i
33 31 oveq1d φ i B j B F i = F j Y + ˙ X + ˙ j = 0 ˙ + ˙ j
34 30 32 33 3eqtr3d φ i B j B F i = F j 0 ˙ + ˙ i = 0 ˙ + ˙ j
35 1 3 2 mndlid E Mnd i B 0 ˙ + ˙ i = i
36 25 16 35 syl2anc φ i B j B F i = F j 0 ˙ + ˙ i = i
37 1 3 2 mndlid E Mnd j B 0 ˙ + ˙ j = j
38 25 20 37 syl2anc φ i B j B F i = F j 0 ˙ + ˙ j = j
39 34 36 38 3eqtr3d φ i B j B F i = F j i = j
40 39 ex φ i B j B F i = F j i = j
41 40 anasss φ i B j B F i = F j i = j
42 41 ralrimivva φ i B j B F i = F j i = j
43 dff13 F : B 1-1 B F : B B i B j B F i = F j i = j
44 13 42 43 sylanbrc φ F : B 1-1 B