Step |
Hyp |
Ref |
Expression |
1 |
|
mndlactfo.b |
|
2 |
|
mndlactfo.z |
|
3 |
|
mndlactfo.p |
|
4 |
|
mndlactfo.f |
|
5 |
|
mndlactfo.e |
|
6 |
|
mndlactfo.x |
|
7 |
|
simpr |
|
8 |
1 2
|
mndidcl |
|
9 |
5 8
|
syl |
|
10 |
9
|
adantr |
|
11 |
|
foelcdmi |
|
12 |
7 10 11
|
syl2anc |
|
13 |
|
oveq2 |
|
14 |
|
simpr |
|
15 |
|
ovexd |
|
16 |
4 13 14 15
|
fvmptd3 |
|
17 |
16
|
eqeq1d |
|
18 |
17
|
biimpd |
|
19 |
18
|
reximdva |
|
20 |
12 19
|
mpd |
|
21 |
5
|
adantr |
|
22 |
6
|
adantr |
|
23 |
|
simpr |
|
24 |
1 3 21 22 23
|
mndcld |
|
25 |
24 4
|
fmptd |
|
26 |
25
|
ad2antrr |
|
27 |
|
fveq2 |
|
28 |
27
|
eqeq2d |
|
29 |
5
|
ad3antrrr |
|
30 |
|
simpllr |
|
31 |
|
simpr |
|
32 |
1 3 29 30 31
|
mndcld |
|
33 |
6
|
ad3antrrr |
|
34 |
1 3 29 33 30 31
|
mndassd |
|
35 |
|
simplr |
|
36 |
35
|
oveq1d |
|
37 |
1 3 2
|
mndlid |
|
38 |
29 31 37
|
syl2anc |
|
39 |
36 38
|
eqtr2d |
|
40 |
|
oveq2 |
|
41 |
|
ovexd |
|
42 |
4 40 32 41
|
fvmptd3 |
|
43 |
34 39 42
|
3eqtr4d |
|
44 |
28 32 43
|
rspcedvdw |
|
45 |
44
|
ralrimiva |
|
46 |
|
dffo3 |
|
47 |
26 45 46
|
sylanbrc |
|
48 |
47
|
r19.29an |
|
49 |
20 48
|
impbida |
|