Metamath Proof Explorer


Theorem mndcld

Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndcld.1 B = Base G
mndcld.2 + ˙ = + G
mndcld.3 φ G Mnd
mndcld.4 φ X B
mndcld.5 φ Y B
Assertion mndcld φ X + ˙ Y B

Proof

Step Hyp Ref Expression
1 mndcld.1 B = Base G
2 mndcld.2 + ˙ = + G
3 mndcld.3 φ G Mnd
4 mndcld.4 φ X B
5 mndcld.5 φ Y B
6 1 2 mndcl G Mnd X B Y B X + ˙ Y B
7 3 4 5 6 syl3anc φ X + ˙ Y B