Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndcld.1 | |- B = ( Base ` G ) |
|
| mndcld.2 | |- .+ = ( +g ` G ) |
||
| mndcld.3 | |- ( ph -> G e. Mnd ) |
||
| mndcld.4 | |- ( ph -> X e. B ) |
||
| mndcld.5 | |- ( ph -> Y e. B ) |
||
| Assertion | mndcld | |- ( ph -> ( X .+ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndcld.1 | |- B = ( Base ` G ) |
|
| 2 | mndcld.2 | |- .+ = ( +g ` G ) |
|
| 3 | mndcld.3 | |- ( ph -> G e. Mnd ) |
|
| 4 | mndcld.4 | |- ( ph -> X e. B ) |
|
| 5 | mndcld.5 | |- ( ph -> Y e. B ) |
|
| 6 | 1 2 | mndcl | |- ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .+ Y ) e. B ) |