Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndcld.1 | |- B = ( Base ` G ) |
|
mndcld.2 | |- .+ = ( +g ` G ) |
||
mndcld.3 | |- ( ph -> G e. Mnd ) |
||
mndcld.4 | |- ( ph -> X e. B ) |
||
mndcld.5 | |- ( ph -> Y e. B ) |
||
Assertion | mndcld | |- ( ph -> ( X .+ Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndcld.1 | |- B = ( Base ` G ) |
|
2 | mndcld.2 | |- .+ = ( +g ` G ) |
|
3 | mndcld.3 | |- ( ph -> G e. Mnd ) |
|
4 | mndcld.4 | |- ( ph -> X e. B ) |
|
5 | mndcld.5 | |- ( ph -> Y e. B ) |
|
6 | 1 2 | mndcl | |- ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .+ Y ) e. B ) |