Metamath Proof Explorer


Theorem mndcld

Description: Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndcld.1
|- B = ( Base ` G )
mndcld.2
|- .+ = ( +g ` G )
mndcld.3
|- ( ph -> G e. Mnd )
mndcld.4
|- ( ph -> X e. B )
mndcld.5
|- ( ph -> Y e. B )
Assertion mndcld
|- ( ph -> ( X .+ Y ) e. B )

Proof

Step Hyp Ref Expression
1 mndcld.1
 |-  B = ( Base ` G )
2 mndcld.2
 |-  .+ = ( +g ` G )
3 mndcld.3
 |-  ( ph -> G e. Mnd )
4 mndcld.4
 |-  ( ph -> X e. B )
5 mndcld.5
 |-  ( ph -> Y e. B )
6 1 2 mndcl
 |-  ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( X .+ Y ) e. B )