Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndassd.1 | |- B = ( Base ` G ) |
|
| mndassd.2 | |- .+ = ( +g ` G ) |
||
| mndassd.3 | |- ( ph -> G e. Mnd ) |
||
| mndassd.4 | |- ( ph -> X e. B ) |
||
| mndassd.5 | |- ( ph -> Y e. B ) |
||
| mndassd.6 | |- ( ph -> Z e. B ) |
||
| Assertion | mndassd | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndassd.1 | |- B = ( Base ` G ) |
|
| 2 | mndassd.2 | |- .+ = ( +g ` G ) |
|
| 3 | mndassd.3 | |- ( ph -> G e. Mnd ) |
|
| 4 | mndassd.4 | |- ( ph -> X e. B ) |
|
| 5 | mndassd.5 | |- ( ph -> Y e. B ) |
|
| 6 | mndassd.6 | |- ( ph -> Z e. B ) |
|
| 7 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |