Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndassd.1 | |- B = ( Base ` G ) |
|
mndassd.2 | |- .+ = ( +g ` G ) |
||
mndassd.3 | |- ( ph -> G e. Mnd ) |
||
mndassd.4 | |- ( ph -> X e. B ) |
||
mndassd.5 | |- ( ph -> Y e. B ) |
||
mndassd.6 | |- ( ph -> Z e. B ) |
||
Assertion | mndassd | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndassd.1 | |- B = ( Base ` G ) |
|
2 | mndassd.2 | |- .+ = ( +g ` G ) |
|
3 | mndassd.3 | |- ( ph -> G e. Mnd ) |
|
4 | mndassd.4 | |- ( ph -> X e. B ) |
|
5 | mndassd.5 | |- ( ph -> Y e. B ) |
|
6 | mndassd.6 | |- ( ph -> Z e. B ) |
|
7 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
8 | 3 4 5 6 7 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |