Metamath Proof Explorer


Theorem mndassd

Description: A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndassd.1
|- B = ( Base ` G )
mndassd.2
|- .+ = ( +g ` G )
mndassd.3
|- ( ph -> G e. Mnd )
mndassd.4
|- ( ph -> X e. B )
mndassd.5
|- ( ph -> Y e. B )
mndassd.6
|- ( ph -> Z e. B )
Assertion mndassd
|- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )

Proof

Step Hyp Ref Expression
1 mndassd.1
 |-  B = ( Base ` G )
2 mndassd.2
 |-  .+ = ( +g ` G )
3 mndassd.3
 |-  ( ph -> G e. Mnd )
4 mndassd.4
 |-  ( ph -> X e. B )
5 mndassd.5
 |-  ( ph -> Y e. B )
6 mndassd.6
 |-  ( ph -> Z e. B )
7 1 2 mndass
 |-  ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )
8 3 4 5 6 7 syl13anc
 |-  ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )