Step |
Hyp |
Ref |
Expression |
1 |
|
mndlrinv.b |
|- B = ( Base ` E ) |
2 |
|
mndlrinv.z |
|- .0. = ( 0g ` E ) |
3 |
|
mndlrinv.p |
|- .+ = ( +g ` E ) |
4 |
|
mndlrinv.e |
|- ( ph -> E e. Mnd ) |
5 |
|
mndlrinv.x |
|- ( ph -> X e. B ) |
6 |
|
mndlrinv.m |
|- ( ph -> M e. B ) |
7 |
|
mndlrinv.n |
|- ( ph -> N e. B ) |
8 |
|
mndlrinv.1 |
|- ( ph -> ( M .+ X ) = .0. ) |
9 |
|
mndlrinv.2 |
|- ( ph -> ( X .+ N ) = .0. ) |
10 |
1 3 4 6 5 7
|
mndassd |
|- ( ph -> ( ( M .+ X ) .+ N ) = ( M .+ ( X .+ N ) ) ) |
11 |
8
|
oveq1d |
|- ( ph -> ( ( M .+ X ) .+ N ) = ( .0. .+ N ) ) |
12 |
9
|
oveq2d |
|- ( ph -> ( M .+ ( X .+ N ) ) = ( M .+ .0. ) ) |
13 |
10 11 12
|
3eqtr3rd |
|- ( ph -> ( M .+ .0. ) = ( .0. .+ N ) ) |
14 |
1 3 2
|
mndrid |
|- ( ( E e. Mnd /\ M e. B ) -> ( M .+ .0. ) = M ) |
15 |
4 6 14
|
syl2anc |
|- ( ph -> ( M .+ .0. ) = M ) |
16 |
1 3 2
|
mndlid |
|- ( ( E e. Mnd /\ N e. B ) -> ( .0. .+ N ) = N ) |
17 |
4 7 16
|
syl2anc |
|- ( ph -> ( .0. .+ N ) = N ) |
18 |
13 15 17
|
3eqtr3d |
|- ( ph -> M = N ) |