| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndlrinv.b |
|- B = ( Base ` E ) |
| 2 |
|
mndlrinv.z |
|- .0. = ( 0g ` E ) |
| 3 |
|
mndlrinv.p |
|- .+ = ( +g ` E ) |
| 4 |
|
mndlrinv.e |
|- ( ph -> E e. Mnd ) |
| 5 |
|
mndlrinv.x |
|- ( ph -> X e. B ) |
| 6 |
|
oveq2 |
|- ( z = u -> ( X .+ z ) = ( X .+ u ) ) |
| 7 |
6
|
eqeq1d |
|- ( z = u -> ( ( X .+ z ) = .0. <-> ( X .+ u ) = .0. ) ) |
| 8 |
|
oveq1 |
|- ( z = u -> ( z .+ X ) = ( u .+ X ) ) |
| 9 |
8
|
eqeq1d |
|- ( z = u -> ( ( z .+ X ) = .0. <-> ( u .+ X ) = .0. ) ) |
| 10 |
7 9
|
anbi12d |
|- ( z = u -> ( ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) <-> ( ( X .+ u ) = .0. /\ ( u .+ X ) = .0. ) ) ) |
| 11 |
|
simplr |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> u e. B ) |
| 12 |
|
simpr |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( X .+ u ) = .0. ) |
| 13 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> E e. Mnd ) |
| 14 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> X e. B ) |
| 15 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> v e. B ) |
| 16 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( v .+ X ) = .0. ) |
| 17 |
1 2 3 13 14 15 11 16 12
|
mndlrinv |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> v = u ) |
| 18 |
17
|
oveq1d |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( v .+ X ) = ( u .+ X ) ) |
| 19 |
18 16
|
eqtr3d |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( u .+ X ) = .0. ) |
| 20 |
12 19
|
jca |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> ( ( X .+ u ) = .0. /\ ( u .+ X ) = .0. ) ) |
| 21 |
10 11 20
|
rspcedvdw |
|- ( ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ u e. B ) /\ ( X .+ u ) = .0. ) -> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) |
| 22 |
21
|
r19.29an |
|- ( ( ( ( ph /\ ( v .+ X ) = .0. ) /\ v e. B ) /\ E. u e. B ( X .+ u ) = .0. ) -> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) |
| 23 |
22
|
an42ds |
|- ( ( ( ( ph /\ E. u e. B ( X .+ u ) = .0. ) /\ v e. B ) /\ ( v .+ X ) = .0. ) -> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) |
| 24 |
23
|
r19.29an |
|- ( ( ( ph /\ E. u e. B ( X .+ u ) = .0. ) /\ E. v e. B ( v .+ X ) = .0. ) -> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) |
| 25 |
24
|
anasss |
|- ( ( ph /\ ( E. u e. B ( X .+ u ) = .0. /\ E. v e. B ( v .+ X ) = .0. ) ) -> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) |
| 26 |
|
oveq2 |
|- ( u = z -> ( X .+ u ) = ( X .+ z ) ) |
| 27 |
26
|
eqeq1d |
|- ( u = z -> ( ( X .+ u ) = .0. <-> ( X .+ z ) = .0. ) ) |
| 28 |
|
simplr |
|- ( ( ( ph /\ z e. B ) /\ ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> z e. B ) |
| 29 |
|
simprl |
|- ( ( ( ph /\ z e. B ) /\ ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> ( X .+ z ) = .0. ) |
| 30 |
27 28 29
|
rspcedvdw |
|- ( ( ( ph /\ z e. B ) /\ ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> E. u e. B ( X .+ u ) = .0. ) |
| 31 |
|
oveq1 |
|- ( v = z -> ( v .+ X ) = ( z .+ X ) ) |
| 32 |
31
|
eqeq1d |
|- ( v = z -> ( ( v .+ X ) = .0. <-> ( z .+ X ) = .0. ) ) |
| 33 |
|
simprr |
|- ( ( ( ph /\ z e. B ) /\ ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> ( z .+ X ) = .0. ) |
| 34 |
32 28 33
|
rspcedvdw |
|- ( ( ( ph /\ z e. B ) /\ ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> E. v e. B ( v .+ X ) = .0. ) |
| 35 |
30 34
|
jca |
|- ( ( ( ph /\ z e. B ) /\ ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> ( E. u e. B ( X .+ u ) = .0. /\ E. v e. B ( v .+ X ) = .0. ) ) |
| 36 |
35
|
r19.29an |
|- ( ( ph /\ E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) -> ( E. u e. B ( X .+ u ) = .0. /\ E. v e. B ( v .+ X ) = .0. ) ) |
| 37 |
25 36
|
impbida |
|- ( ph -> ( ( E. u e. B ( X .+ u ) = .0. /\ E. v e. B ( v .+ X ) = .0. ) <-> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) ) |
| 38 |
|
oveq2 |
|- ( y = z -> ( X .+ y ) = ( X .+ z ) ) |
| 39 |
38
|
eqeq1d |
|- ( y = z -> ( ( X .+ y ) = .0. <-> ( X .+ z ) = .0. ) ) |
| 40 |
|
oveq1 |
|- ( y = z -> ( y .+ X ) = ( z .+ X ) ) |
| 41 |
40
|
eqeq1d |
|- ( y = z -> ( ( y .+ X ) = .0. <-> ( z .+ X ) = .0. ) ) |
| 42 |
39 41
|
anbi12d |
|- ( y = z -> ( ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) <-> ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) ) |
| 43 |
42
|
cbvrexvw |
|- ( E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) <-> E. z e. B ( ( X .+ z ) = .0. /\ ( z .+ X ) = .0. ) ) |
| 44 |
37 43
|
bitr4di |
|- ( ph -> ( ( E. u e. B ( X .+ u ) = .0. /\ E. v e. B ( v .+ X ) = .0. ) <-> E. y e. B ( ( X .+ y ) = .0. /\ ( y .+ X ) = .0. ) ) ) |