Metamath Proof Explorer


Theorem mndlrinvb

Description: In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses mndlrinv.b B = Base E
mndlrinv.z 0 ˙ = 0 E
mndlrinv.p + ˙ = + E
mndlrinv.e φ E Mnd
mndlrinv.x φ X B
Assertion mndlrinvb φ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙ y B X + ˙ y = 0 ˙ y + ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 mndlrinv.b B = Base E
2 mndlrinv.z 0 ˙ = 0 E
3 mndlrinv.p + ˙ = + E
4 mndlrinv.e φ E Mnd
5 mndlrinv.x φ X B
6 oveq2 z = u X + ˙ z = X + ˙ u
7 6 eqeq1d z = u X + ˙ z = 0 ˙ X + ˙ u = 0 ˙
8 oveq1 z = u z + ˙ X = u + ˙ X
9 8 eqeq1d z = u z + ˙ X = 0 ˙ u + ˙ X = 0 ˙
10 7 9 anbi12d z = u X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ X + ˙ u = 0 ˙ u + ˙ X = 0 ˙
11 simplr φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ u B
12 simpr φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ X + ˙ u = 0 ˙
13 4 ad4antr φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ E Mnd
14 5 ad4antr φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ X B
15 simpllr φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ v B
16 simp-4r φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ v + ˙ X = 0 ˙
17 1 2 3 13 14 15 11 16 12 mndlrinv φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ v = u
18 17 oveq1d φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ v + ˙ X = u + ˙ X
19 18 16 eqtr3d φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ u + ˙ X = 0 ˙
20 12 19 jca φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ X + ˙ u = 0 ˙ u + ˙ X = 0 ˙
21 10 11 20 rspcedvdw φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
22 21 r19.29an φ v + ˙ X = 0 ˙ v B u B X + ˙ u = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
23 22 an42ds φ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
24 23 r19.29an φ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
25 24 anasss φ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
26 oveq2 u = z X + ˙ u = X + ˙ z
27 26 eqeq1d u = z X + ˙ u = 0 ˙ X + ˙ z = 0 ˙
28 simplr φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ z B
29 simprl φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ X + ˙ z = 0 ˙
30 27 28 29 rspcedvdw φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ u B X + ˙ u = 0 ˙
31 oveq1 v = z v + ˙ X = z + ˙ X
32 31 eqeq1d v = z v + ˙ X = 0 ˙ z + ˙ X = 0 ˙
33 simprr φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ z + ˙ X = 0 ˙
34 32 28 33 rspcedvdw φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ v B v + ˙ X = 0 ˙
35 30 34 jca φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙
36 35 r19.29an φ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙
37 25 36 impbida φ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
38 oveq2 y = z X + ˙ y = X + ˙ z
39 38 eqeq1d y = z X + ˙ y = 0 ˙ X + ˙ z = 0 ˙
40 oveq1 y = z y + ˙ X = z + ˙ X
41 40 eqeq1d y = z y + ˙ X = 0 ˙ z + ˙ X = 0 ˙
42 39 41 anbi12d y = z X + ˙ y = 0 ˙ y + ˙ X = 0 ˙ X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
43 42 cbvrexvw y B X + ˙ y = 0 ˙ y + ˙ X = 0 ˙ z B X + ˙ z = 0 ˙ z + ˙ X = 0 ˙
44 37 43 bitr4di φ u B X + ˙ u = 0 ˙ v B v + ˙ X = 0 ˙ y B X + ˙ y = 0 ˙ y + ˙ X = 0 ˙