| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndlactfo.b |
|- B = ( Base ` E ) |
| 2 |
|
mndlactfo.z |
|- .0. = ( 0g ` E ) |
| 3 |
|
mndlactfo.p |
|- .+ = ( +g ` E ) |
| 4 |
|
mndlactfo.f |
|- F = ( a e. B |-> ( X .+ a ) ) |
| 5 |
|
mndlactfo.e |
|- ( ph -> E e. Mnd ) |
| 6 |
|
mndlactfo.x |
|- ( ph -> X e. B ) |
| 7 |
|
mndlactf1.1 |
|- ( ph -> Y e. B ) |
| 8 |
|
mndlactf1.2 |
|- ( ph -> ( Y .+ X ) = .0. ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ a e. B ) -> E e. Mnd ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ a e. B ) -> X e. B ) |
| 11 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
| 12 |
1 3 9 10 11
|
mndcld |
|- ( ( ph /\ a e. B ) -> ( X .+ a ) e. B ) |
| 13 |
12 4
|
fmptd |
|- ( ph -> F : B --> B ) |
| 14 |
|
simpr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( F ` i ) = ( F ` j ) ) |
| 15 |
|
oveq2 |
|- ( a = i -> ( X .+ a ) = ( X .+ i ) ) |
| 16 |
|
simpllr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> i e. B ) |
| 17 |
|
ovexd |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( X .+ i ) e. _V ) |
| 18 |
4 15 16 17
|
fvmptd3 |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( F ` i ) = ( X .+ i ) ) |
| 19 |
|
oveq2 |
|- ( a = j -> ( X .+ a ) = ( X .+ j ) ) |
| 20 |
|
simplr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> j e. B ) |
| 21 |
|
ovexd |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( X .+ j ) e. _V ) |
| 22 |
4 19 20 21
|
fvmptd3 |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( F ` j ) = ( X .+ j ) ) |
| 23 |
14 18 22
|
3eqtr3d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( X .+ i ) = ( X .+ j ) ) |
| 24 |
23
|
oveq2d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( Y .+ ( X .+ i ) ) = ( Y .+ ( X .+ j ) ) ) |
| 25 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> E e. Mnd ) |
| 26 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> Y e. B ) |
| 27 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> X e. B ) |
| 28 |
1 3 25 26 27 16
|
mndassd |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( ( Y .+ X ) .+ i ) = ( Y .+ ( X .+ i ) ) ) |
| 29 |
1 3 25 26 27 20
|
mndassd |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( ( Y .+ X ) .+ j ) = ( Y .+ ( X .+ j ) ) ) |
| 30 |
24 28 29
|
3eqtr4d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( ( Y .+ X ) .+ i ) = ( ( Y .+ X ) .+ j ) ) |
| 31 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( Y .+ X ) = .0. ) |
| 32 |
31
|
oveq1d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( ( Y .+ X ) .+ i ) = ( .0. .+ i ) ) |
| 33 |
31
|
oveq1d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( ( Y .+ X ) .+ j ) = ( .0. .+ j ) ) |
| 34 |
30 32 33
|
3eqtr3d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( .0. .+ i ) = ( .0. .+ j ) ) |
| 35 |
1 3 2
|
mndlid |
|- ( ( E e. Mnd /\ i e. B ) -> ( .0. .+ i ) = i ) |
| 36 |
25 16 35
|
syl2anc |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( .0. .+ i ) = i ) |
| 37 |
1 3 2
|
mndlid |
|- ( ( E e. Mnd /\ j e. B ) -> ( .0. .+ j ) = j ) |
| 38 |
25 20 37
|
syl2anc |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> ( .0. .+ j ) = j ) |
| 39 |
34 36 38
|
3eqtr3d |
|- ( ( ( ( ph /\ i e. B ) /\ j e. B ) /\ ( F ` i ) = ( F ` j ) ) -> i = j ) |
| 40 |
39
|
ex |
|- ( ( ( ph /\ i e. B ) /\ j e. B ) -> ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
| 41 |
40
|
anasss |
|- ( ( ph /\ ( i e. B /\ j e. B ) ) -> ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
| 42 |
41
|
ralrimivva |
|- ( ph -> A. i e. B A. j e. B ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
| 43 |
|
dff13 |
|- ( F : B -1-1-> B <-> ( F : B --> B /\ A. i e. B A. j e. B ( ( F ` i ) = ( F ` j ) -> i = j ) ) ) |
| 44 |
13 42 43
|
sylanbrc |
|- ( ph -> F : B -1-1-> B ) |