Step |
Hyp |
Ref |
Expression |
1 |
|
mndlactfo.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
mndlactfo.z |
⊢ 0 = ( 0g ‘ 𝐸 ) |
3 |
|
mndlactfo.p |
⊢ + = ( +g ‘ 𝐸 ) |
4 |
|
mndlactfo.f |
⊢ 𝐹 = ( 𝑎 ∈ 𝐵 ↦ ( 𝑋 + 𝑎 ) ) |
5 |
|
mndlactfo.e |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
6 |
|
mndlactfo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) → 𝐹 : 𝐵 –onto→ 𝐵 ) |
8 |
1 2
|
mndidcl |
⊢ ( 𝐸 ∈ Mnd → 0 ∈ 𝐵 ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) → 0 ∈ 𝐵 ) |
11 |
|
foelcdmi |
⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐵 ∧ 0 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 0 ) |
12 |
7 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 0 ) |
13 |
|
oveq2 |
⊢ ( 𝑎 = 𝑦 → ( 𝑋 + 𝑎 ) = ( 𝑋 + 𝑦 ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
15 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 + 𝑦 ) ∈ V ) |
16 |
4 13 14 15
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑋 + 𝑦 ) ) |
17 |
16
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 ↔ ( 𝑋 + 𝑦 ) = 0 ) ) |
18 |
17
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 → ( 𝑋 + 𝑦 ) = 0 ) ) |
19 |
18
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 0 → ∃ 𝑦 ∈ 𝐵 ( 𝑋 + 𝑦 ) = 0 ) ) |
20 |
12 19
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝐵 –onto→ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑋 + 𝑦 ) = 0 ) |
21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐸 ∈ Mnd ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
24 |
1 3 21 22 23
|
mndcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑋 + 𝑎 ) ∈ 𝐵 ) |
25 |
24 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐵 ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) → 𝐹 : 𝐵 ⟶ 𝐵 ) |
27 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
28 |
27
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝑧 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑧 = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
29 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐸 ∈ Mnd ) |
30 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
32 |
1 3 29 30 31
|
mndcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 + 𝑧 ) ∈ 𝐵 ) |
33 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
34 |
1 3 29 33 30 31
|
mndassd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑋 + 𝑦 ) + 𝑧 ) = ( 𝑋 + ( 𝑦 + 𝑧 ) ) ) |
35 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑋 + 𝑦 ) = 0 ) |
36 |
35
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑋 + 𝑦 ) + 𝑧 ) = ( 0 + 𝑧 ) ) |
37 |
1 3 2
|
mndlid |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑧 ∈ 𝐵 ) → ( 0 + 𝑧 ) = 𝑧 ) |
38 |
29 31 37
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 0 + 𝑧 ) = 𝑧 ) |
39 |
36 38
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 = ( ( 𝑋 + 𝑦 ) + 𝑧 ) ) |
40 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑦 + 𝑧 ) → ( 𝑋 + 𝑎 ) = ( 𝑋 + ( 𝑦 + 𝑧 ) ) ) |
41 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑋 + ( 𝑦 + 𝑧 ) ) ∈ V ) |
42 |
4 40 32 41
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( 𝑋 + ( 𝑦 + 𝑧 ) ) ) |
43 |
34 39 42
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
44 |
28 32 43
|
rspcedvdw |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 𝑧 = ( 𝐹 ‘ 𝑥 ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 𝑧 = ( 𝐹 ‘ 𝑥 ) ) |
46 |
|
dffo3 |
⊢ ( 𝐹 : 𝐵 –onto→ 𝐵 ↔ ( 𝐹 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 𝑧 = ( 𝐹 ‘ 𝑥 ) ) ) |
47 |
26 45 46
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑦 ) = 0 ) → 𝐹 : 𝐵 –onto→ 𝐵 ) |
48 |
47
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑋 + 𝑦 ) = 0 ) → 𝐹 : 𝐵 –onto→ 𝐵 ) |
49 |
20 48
|
impbida |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –onto→ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑋 + 𝑦 ) = 0 ) ) |