| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpsubm.b |
|- B = ( Base ` G ) |
| 2 |
|
fxpsubg.c |
|- C = ( Base ` W ) |
| 3 |
|
fxpsubm.f |
|- F = ( x e. C |-> ( p A x ) ) |
| 4 |
|
fxpsubg.a |
|- ( ph -> A e. ( G GrpAct C ) ) |
| 5 |
|
fxpsubm.1 |
|- ( ( ph /\ p e. B ) -> F e. ( W MndHom W ) ) |
| 6 |
|
oveq1 |
|- ( p = ( 0g ` G ) -> ( p A x ) = ( ( 0g ` G ) A x ) ) |
| 7 |
6
|
mpteq2dv |
|- ( p = ( 0g ` G ) -> ( x e. C |-> ( p A x ) ) = ( x e. C |-> ( ( 0g ` G ) A x ) ) ) |
| 8 |
3 7
|
eqtrid |
|- ( p = ( 0g ` G ) -> F = ( x e. C |-> ( ( 0g ` G ) A x ) ) ) |
| 9 |
8
|
eleq1d |
|- ( p = ( 0g ` G ) -> ( F e. ( W MndHom W ) <-> ( x e. C |-> ( ( 0g ` G ) A x ) ) e. ( W MndHom W ) ) ) |
| 10 |
5
|
ralrimiva |
|- ( ph -> A. p e. B F e. ( W MndHom W ) ) |
| 11 |
|
gagrp |
|- ( A e. ( G GrpAct C ) -> G e. Grp ) |
| 12 |
4 11
|
syl |
|- ( ph -> G e. Grp ) |
| 13 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 14 |
1 13
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 15 |
12 14
|
syl |
|- ( ph -> ( 0g ` G ) e. B ) |
| 16 |
9 10 15
|
rspcdva |
|- ( ph -> ( x e. C |-> ( ( 0g ` G ) A x ) ) e. ( W MndHom W ) ) |
| 17 |
|
mhmrcl1 |
|- ( ( x e. C |-> ( ( 0g ` G ) A x ) ) e. ( W MndHom W ) -> W e. Mnd ) |
| 18 |
16 17
|
syl |
|- ( ph -> W e. Mnd ) |
| 19 |
|
gaset |
|- ( A e. ( G GrpAct C ) -> C e. _V ) |
| 20 |
4 19
|
syl |
|- ( ph -> C e. _V ) |
| 21 |
20 4
|
fxpss |
|- ( ph -> ( C FixPts A ) C_ C ) |
| 22 |
|
oveq2 |
|- ( x = ( 0g ` W ) -> ( p A x ) = ( p A ( 0g ` W ) ) ) |
| 23 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 24 |
2 23
|
mndidcl |
|- ( W e. Mnd -> ( 0g ` W ) e. C ) |
| 25 |
18 24
|
syl |
|- ( ph -> ( 0g ` W ) e. C ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ p e. B ) -> ( 0g ` W ) e. C ) |
| 27 |
|
ovexd |
|- ( ( ph /\ p e. B ) -> ( p A ( 0g ` W ) ) e. _V ) |
| 28 |
3 22 26 27
|
fvmptd3 |
|- ( ( ph /\ p e. B ) -> ( F ` ( 0g ` W ) ) = ( p A ( 0g ` W ) ) ) |
| 29 |
23 23
|
mhm0 |
|- ( F e. ( W MndHom W ) -> ( F ` ( 0g ` W ) ) = ( 0g ` W ) ) |
| 30 |
5 29
|
syl |
|- ( ( ph /\ p e. B ) -> ( F ` ( 0g ` W ) ) = ( 0g ` W ) ) |
| 31 |
28 30
|
eqtr3d |
|- ( ( ph /\ p e. B ) -> ( p A ( 0g ` W ) ) = ( 0g ` W ) ) |
| 32 |
31
|
ralrimiva |
|- ( ph -> A. p e. B ( p A ( 0g ` W ) ) = ( 0g ` W ) ) |
| 33 |
1 4 25
|
isfxp |
|- ( ph -> ( ( 0g ` W ) e. ( C FixPts A ) <-> A. p e. B ( p A ( 0g ` W ) ) = ( 0g ` W ) ) ) |
| 34 |
32 33
|
mpbird |
|- ( ph -> ( 0g ` W ) e. ( C FixPts A ) ) |
| 35 |
5
|
ad4ant14 |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> F e. ( W MndHom W ) ) |
| 36 |
21
|
ad2antrr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> ( C FixPts A ) C_ C ) |
| 37 |
|
simplr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> z e. ( C FixPts A ) ) |
| 38 |
36 37
|
sseldd |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> z e. C ) |
| 39 |
38
|
adantr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> z e. C ) |
| 40 |
21
|
adantr |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> ( C FixPts A ) C_ C ) |
| 41 |
40
|
sselda |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> y e. C ) |
| 42 |
41
|
adantr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> y e. C ) |
| 43 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 44 |
2 43 43
|
mhmlin |
|- ( ( F e. ( W MndHom W ) /\ z e. C /\ y e. C ) -> ( F ` ( z ( +g ` W ) y ) ) = ( ( F ` z ) ( +g ` W ) ( F ` y ) ) ) |
| 45 |
35 39 42 44
|
syl3anc |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` ( z ( +g ` W ) y ) ) = ( ( F ` z ) ( +g ` W ) ( F ` y ) ) ) |
| 46 |
|
oveq2 |
|- ( x = ( z ( +g ` W ) y ) -> ( p A x ) = ( p A ( z ( +g ` W ) y ) ) ) |
| 47 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> W e. Mnd ) |
| 48 |
2 43 47 38 41
|
mndcld |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> ( z ( +g ` W ) y ) e. C ) |
| 49 |
48
|
adantr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( z ( +g ` W ) y ) e. C ) |
| 50 |
|
ovexd |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( p A ( z ( +g ` W ) y ) ) e. _V ) |
| 51 |
3 46 49 50
|
fvmptd3 |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` ( z ( +g ` W ) y ) ) = ( p A ( z ( +g ` W ) y ) ) ) |
| 52 |
|
oveq2 |
|- ( x = z -> ( p A x ) = ( p A z ) ) |
| 53 |
|
ovexd |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( p A z ) e. _V ) |
| 54 |
3 52 39 53
|
fvmptd3 |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` z ) = ( p A z ) ) |
| 55 |
4
|
ad2antrr |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> A e. ( G GrpAct C ) ) |
| 56 |
55
|
adantr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> A e. ( G GrpAct C ) ) |
| 57 |
37
|
adantr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> z e. ( C FixPts A ) ) |
| 58 |
|
simpr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> p e. B ) |
| 59 |
1 56 57 58
|
fxpgaeq |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( p A z ) = z ) |
| 60 |
54 59
|
eqtrd |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` z ) = z ) |
| 61 |
|
oveq2 |
|- ( x = y -> ( p A x ) = ( p A y ) ) |
| 62 |
|
ovexd |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( p A y ) e. _V ) |
| 63 |
3 61 42 62
|
fvmptd3 |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` y ) = ( p A y ) ) |
| 64 |
|
simplr |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> y e. ( C FixPts A ) ) |
| 65 |
1 56 64 58
|
fxpgaeq |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( p A y ) = y ) |
| 66 |
63 65
|
eqtrd |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( F ` y ) = y ) |
| 67 |
60 66
|
oveq12d |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( ( F ` z ) ( +g ` W ) ( F ` y ) ) = ( z ( +g ` W ) y ) ) |
| 68 |
45 51 67
|
3eqtr3d |
|- ( ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) /\ p e. B ) -> ( p A ( z ( +g ` W ) y ) ) = ( z ( +g ` W ) y ) ) |
| 69 |
68
|
ralrimiva |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> A. p e. B ( p A ( z ( +g ` W ) y ) ) = ( z ( +g ` W ) y ) ) |
| 70 |
1 55 48
|
isfxp |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> ( ( z ( +g ` W ) y ) e. ( C FixPts A ) <-> A. p e. B ( p A ( z ( +g ` W ) y ) ) = ( z ( +g ` W ) y ) ) ) |
| 71 |
69 70
|
mpbird |
|- ( ( ( ph /\ z e. ( C FixPts A ) ) /\ y e. ( C FixPts A ) ) -> ( z ( +g ` W ) y ) e. ( C FixPts A ) ) |
| 72 |
71
|
ralrimiva |
|- ( ( ph /\ z e. ( C FixPts A ) ) -> A. y e. ( C FixPts A ) ( z ( +g ` W ) y ) e. ( C FixPts A ) ) |
| 73 |
72
|
ralrimiva |
|- ( ph -> A. z e. ( C FixPts A ) A. y e. ( C FixPts A ) ( z ( +g ` W ) y ) e. ( C FixPts A ) ) |
| 74 |
2 23 43
|
issubm |
|- ( W e. Mnd -> ( ( C FixPts A ) e. ( SubMnd ` W ) <-> ( ( C FixPts A ) C_ C /\ ( 0g ` W ) e. ( C FixPts A ) /\ A. z e. ( C FixPts A ) A. y e. ( C FixPts A ) ( z ( +g ` W ) y ) e. ( C FixPts A ) ) ) ) |
| 75 |
74
|
biimpar |
|- ( ( W e. Mnd /\ ( ( C FixPts A ) C_ C /\ ( 0g ` W ) e. ( C FixPts A ) /\ A. z e. ( C FixPts A ) A. y e. ( C FixPts A ) ( z ( +g ` W ) y ) e. ( C FixPts A ) ) ) -> ( C FixPts A ) e. ( SubMnd ` W ) ) |
| 76 |
18 21 34 73 75
|
syl13anc |
|- ( ph -> ( C FixPts A ) e. ( SubMnd ` W ) ) |