| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpgaval.s |
|- U = ( Base ` G ) |
| 2 |
|
fxpgaval.a |
|- ( ph -> A e. ( G GrpAct C ) ) |
| 3 |
|
isfxp.x |
|- ( ph -> X e. C ) |
| 4 |
1 2
|
fxpgaval |
|- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) |
| 5 |
4
|
eleq2d |
|- ( ph -> ( X e. ( C FixPts A ) <-> X e. { x e. C | A. p e. U ( p A x ) = x } ) ) |
| 6 |
|
oveq2 |
|- ( x = X -> ( p A x ) = ( p A X ) ) |
| 7 |
|
id |
|- ( x = X -> x = X ) |
| 8 |
6 7
|
eqeq12d |
|- ( x = X -> ( ( p A x ) = x <-> ( p A X ) = X ) ) |
| 9 |
8
|
ralbidv |
|- ( x = X -> ( A. p e. U ( p A x ) = x <-> A. p e. U ( p A X ) = X ) ) |
| 10 |
9
|
elrab |
|- ( X e. { x e. C | A. p e. U ( p A x ) = x } <-> ( X e. C /\ A. p e. U ( p A X ) = X ) ) |
| 11 |
5 10
|
bitrdi |
|- ( ph -> ( X e. ( C FixPts A ) <-> ( X e. C /\ A. p e. U ( p A X ) = X ) ) ) |
| 12 |
3 11
|
mpbirand |
|- ( ph -> ( X e. ( C FixPts A ) <-> A. p e. U ( p A X ) = X ) ) |