Step |
Hyp |
Ref |
Expression |
0 |
|
cgzp |
|- AxPow |
1 |
|
c1o |
|- 1o |
2 |
|
c2o |
|- 2o |
3 |
|
cgoe |
|- e.g |
4 |
1 2 3
|
co |
|- ( 1o e.g 2o ) |
5 |
|
cgob |
|- <->g |
6 |
|
c0 |
|- (/) |
7 |
1 6 3
|
co |
|- ( 1o e.g (/) ) |
8 |
4 7 5
|
co |
|- ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) |
9 |
8 1
|
cgol |
|- A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) |
10 |
|
cgoi |
|- ->g |
11 |
2 1 3
|
co |
|- ( 2o e.g 1o ) |
12 |
9 11 10
|
co |
|- ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |
13 |
12 2
|
cgol |
|- A.g 2o ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |
14 |
13 1
|
cgox |
|- E.g 1o A.g 2o ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |
15 |
0 14
|
wceq |
|- AxPow = E.g 1o A.g 2o ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |