| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzp |
|- AxPow |
| 1 |
|
c1o |
|- 1o |
| 2 |
|
c2o |
|- 2o |
| 3 |
|
cgoe |
|- e.g |
| 4 |
1 2 3
|
co |
|- ( 1o e.g 2o ) |
| 5 |
|
cgob |
|- <->g |
| 6 |
|
c0 |
|- (/) |
| 7 |
1 6 3
|
co |
|- ( 1o e.g (/) ) |
| 8 |
4 7 5
|
co |
|- ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) |
| 9 |
8 1
|
cgol |
|- A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) |
| 10 |
|
cgoi |
|- ->g |
| 11 |
2 1 3
|
co |
|- ( 2o e.g 1o ) |
| 12 |
9 11 10
|
co |
|- ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |
| 13 |
12 2
|
cgol |
|- A.g 2o ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |
| 14 |
13 1
|
cgox |
|- E.g 1o A.g 2o ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |
| 15 |
0 14
|
wceq |
|- AxPow = E.g 1o A.g 2o ( A.g 1o ( ( 1o e.g 2o ) <->g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |