Metamath Proof Explorer


Definition df-gzpow

Description: The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzpow AxPow = ∃𝑔 1o𝑔 2o ( ∀𝑔 1o ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) ) →𝑔 ( 2o𝑔 1o ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzp AxPow
1 c1o 1o
2 c2o 2o
3 cgoe 𝑔
4 1 2 3 co ( 1o𝑔 2o )
5 cgob 𝑔
6 c0
7 1 6 3 co ( 1o𝑔 ∅ )
8 4 7 5 co ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) )
9 8 1 cgol 𝑔 1o ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) )
10 cgoi 𝑔
11 2 1 3 co ( 2o𝑔 1o )
12 9 11 10 co ( ∀𝑔 1o ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) ) →𝑔 ( 2o𝑔 1o ) )
13 12 2 cgol 𝑔 2o ( ∀𝑔 1o ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) ) →𝑔 ( 2o𝑔 1o ) )
14 13 1 cgox 𝑔 1o𝑔 2o ( ∀𝑔 1o ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) ) →𝑔 ( 2o𝑔 1o ) )
15 0 14 wceq AxPow = ∃𝑔 1o𝑔 2o ( ∀𝑔 1o ( ( 1o𝑔 2o ) ↔𝑔 ( 1o𝑔 ∅ ) ) →𝑔 ( 2o𝑔 1o ) )