| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzp |
⊢ AxPow |
| 1 |
|
c1o |
⊢ 1o |
| 2 |
|
c2o |
⊢ 2o |
| 3 |
|
cgoe |
⊢ ∈𝑔 |
| 4 |
1 2 3
|
co |
⊢ ( 1o ∈𝑔 2o ) |
| 5 |
|
cgob |
⊢ ↔𝑔 |
| 6 |
|
c0 |
⊢ ∅ |
| 7 |
1 6 3
|
co |
⊢ ( 1o ∈𝑔 ∅ ) |
| 8 |
4 7 5
|
co |
⊢ ( ( 1o ∈𝑔 2o ) ↔𝑔 ( 1o ∈𝑔 ∅ ) ) |
| 9 |
8 1
|
cgol |
⊢ ∀𝑔 1o ( ( 1o ∈𝑔 2o ) ↔𝑔 ( 1o ∈𝑔 ∅ ) ) |
| 10 |
|
cgoi |
⊢ →𝑔 |
| 11 |
2 1 3
|
co |
⊢ ( 2o ∈𝑔 1o ) |
| 12 |
9 11 10
|
co |
⊢ ( ∀𝑔 1o ( ( 1o ∈𝑔 2o ) ↔𝑔 ( 1o ∈𝑔 ∅ ) ) →𝑔 ( 2o ∈𝑔 1o ) ) |
| 13 |
12 2
|
cgol |
⊢ ∀𝑔 2o ( ∀𝑔 1o ( ( 1o ∈𝑔 2o ) ↔𝑔 ( 1o ∈𝑔 ∅ ) ) →𝑔 ( 2o ∈𝑔 1o ) ) |
| 14 |
13 1
|
cgox |
⊢ ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o ( ( 1o ∈𝑔 2o ) ↔𝑔 ( 1o ∈𝑔 ∅ ) ) →𝑔 ( 2o ∈𝑔 1o ) ) |
| 15 |
0 14
|
wceq |
⊢ AxPow = ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o ( ( 1o ∈𝑔 2o ) ↔𝑔 ( 1o ∈𝑔 ∅ ) ) →𝑔 ( 2o ∈𝑔 1o ) ) |