Metamath Proof Explorer


Definition df-imas

Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly f must either be injective or satisfy the well-definedness condition f ( a ) = f ( c ) /\ f ( b ) = f ( d ) -> f ( a + b ) = f ( c + d ) for each relevant operation.

Note that although we call this an "image" by association to df-ima , in order to keep the definition simple we consider only the case when the domain of F is equal to the base set of R . Other cases can be achieved by restricting F (with df-res ) and/or R ( with df-ress ) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by AV, 6-Oct-2020)

Ref Expression
Assertion df-imas
|- "s = ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimas
 |-  "s
1 vf
 |-  f
2 cvv
 |-  _V
3 vr
 |-  r
4 cbs
 |-  Base
5 3 cv
 |-  r
6 5 4 cfv
 |-  ( Base ` r )
7 vv
 |-  v
8 cnx
 |-  ndx
9 8 4 cfv
 |-  ( Base ` ndx )
10 1 cv
 |-  f
11 10 crn
 |-  ran f
12 9 11 cop
 |-  <. ( Base ` ndx ) , ran f >.
13 cplusg
 |-  +g
14 8 13 cfv
 |-  ( +g ` ndx )
15 vp
 |-  p
16 7 cv
 |-  v
17 vq
 |-  q
18 15 cv
 |-  p
19 18 10 cfv
 |-  ( f ` p )
20 17 cv
 |-  q
21 20 10 cfv
 |-  ( f ` q )
22 19 21 cop
 |-  <. ( f ` p ) , ( f ` q ) >.
23 5 13 cfv
 |-  ( +g ` r )
24 18 20 23 co
 |-  ( p ( +g ` r ) q )
25 24 10 cfv
 |-  ( f ` ( p ( +g ` r ) q ) )
26 22 25 cop
 |-  <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >.
27 26 csn
 |-  { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. }
28 17 16 27 ciun
 |-  U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. }
29 15 16 28 ciun
 |-  U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. }
30 14 29 cop
 |-  <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >.
31 cmulr
 |-  .r
32 8 31 cfv
 |-  ( .r ` ndx )
33 5 31 cfv
 |-  ( .r ` r )
34 18 20 33 co
 |-  ( p ( .r ` r ) q )
35 34 10 cfv
 |-  ( f ` ( p ( .r ` r ) q ) )
36 22 35 cop
 |-  <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >.
37 36 csn
 |-  { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. }
38 17 16 37 ciun
 |-  U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. }
39 15 16 38 ciun
 |-  U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. }
40 32 39 cop
 |-  <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >.
41 12 30 40 ctp
 |-  { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. }
42 csca
 |-  Scalar
43 8 42 cfv
 |-  ( Scalar ` ndx )
44 5 42 cfv
 |-  ( Scalar ` r )
45 43 44 cop
 |-  <. ( Scalar ` ndx ) , ( Scalar ` r ) >.
46 cvsca
 |-  .s
47 8 46 cfv
 |-  ( .s ` ndx )
48 44 4 cfv
 |-  ( Base ` ( Scalar ` r ) )
49 vx
 |-  x
50 21 csn
 |-  { ( f ` q ) }
51 5 46 cfv
 |-  ( .s ` r )
52 18 20 51 co
 |-  ( p ( .s ` r ) q )
53 52 10 cfv
 |-  ( f ` ( p ( .s ` r ) q ) )
54 15 49 48 50 53 cmpo
 |-  ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) )
55 17 16 54 ciun
 |-  U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) )
56 47 55 cop
 |-  <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >.
57 cip
 |-  .i
58 8 57 cfv
 |-  ( .i ` ndx )
59 5 57 cfv
 |-  ( .i ` r )
60 18 20 59 co
 |-  ( p ( .i ` r ) q )
61 22 60 cop
 |-  <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >.
62 61 csn
 |-  { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. }
63 17 16 62 ciun
 |-  U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. }
64 15 16 63 ciun
 |-  U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. }
65 58 64 cop
 |-  <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >.
66 45 56 65 ctp
 |-  { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. }
67 41 66 cun
 |-  ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } )
68 cts
 |-  TopSet
69 8 68 cfv
 |-  ( TopSet ` ndx )
70 ctopn
 |-  TopOpen
71 5 70 cfv
 |-  ( TopOpen ` r )
72 cqtop
 |-  qTop
73 71 10 72 co
 |-  ( ( TopOpen ` r ) qTop f )
74 69 73 cop
 |-  <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >.
75 cple
 |-  le
76 8 75 cfv
 |-  ( le ` ndx )
77 5 75 cfv
 |-  ( le ` r )
78 10 77 ccom
 |-  ( f o. ( le ` r ) )
79 10 ccnv
 |-  `' f
80 78 79 ccom
 |-  ( ( f o. ( le ` r ) ) o. `' f )
81 76 80 cop
 |-  <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >.
82 cds
 |-  dist
83 8 82 cfv
 |-  ( dist ` ndx )
84 vy
 |-  y
85 vn
 |-  n
86 cn
 |-  NN
87 vg
 |-  g
88 vh
 |-  h
89 16 16 cxp
 |-  ( v X. v )
90 cmap
 |-  ^m
91 c1
 |-  1
92 cfz
 |-  ...
93 85 cv
 |-  n
94 91 93 92 co
 |-  ( 1 ... n )
95 89 94 90 co
 |-  ( ( v X. v ) ^m ( 1 ... n ) )
96 c1st
 |-  1st
97 88 cv
 |-  h
98 91 97 cfv
 |-  ( h ` 1 )
99 98 96 cfv
 |-  ( 1st ` ( h ` 1 ) )
100 99 10 cfv
 |-  ( f ` ( 1st ` ( h ` 1 ) ) )
101 49 cv
 |-  x
102 100 101 wceq
 |-  ( f ` ( 1st ` ( h ` 1 ) ) ) = x
103 c2nd
 |-  2nd
104 93 97 cfv
 |-  ( h ` n )
105 104 103 cfv
 |-  ( 2nd ` ( h ` n ) )
106 105 10 cfv
 |-  ( f ` ( 2nd ` ( h ` n ) ) )
107 84 cv
 |-  y
108 106 107 wceq
 |-  ( f ` ( 2nd ` ( h ` n ) ) ) = y
109 vi
 |-  i
110 cmin
 |-  -
111 93 91 110 co
 |-  ( n - 1 )
112 91 111 92 co
 |-  ( 1 ... ( n - 1 ) )
113 109 cv
 |-  i
114 113 97 cfv
 |-  ( h ` i )
115 114 103 cfv
 |-  ( 2nd ` ( h ` i ) )
116 115 10 cfv
 |-  ( f ` ( 2nd ` ( h ` i ) ) )
117 caddc
 |-  +
118 113 91 117 co
 |-  ( i + 1 )
119 118 97 cfv
 |-  ( h ` ( i + 1 ) )
120 119 96 cfv
 |-  ( 1st ` ( h ` ( i + 1 ) ) )
121 120 10 cfv
 |-  ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) )
122 116 121 wceq
 |-  ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) )
123 122 109 112 wral
 |-  A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) )
124 102 108 123 w3a
 |-  ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) )
125 124 88 95 crab
 |-  { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) }
126 cxrs
 |-  RR*s
127 cgsu
 |-  gsum
128 5 82 cfv
 |-  ( dist ` r )
129 87 cv
 |-  g
130 128 129 ccom
 |-  ( ( dist ` r ) o. g )
131 126 130 127 co
 |-  ( RR*s gsum ( ( dist ` r ) o. g ) )
132 87 125 131 cmpt
 |-  ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) )
133 132 crn
 |-  ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) )
134 85 86 133 ciun
 |-  U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) )
135 cxr
 |-  RR*
136 clt
 |-  <
137 134 135 136 cinf
 |-  inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < )
138 49 84 11 11 137 cmpo
 |-  ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) )
139 83 138 cop
 |-  <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >.
140 74 81 139 ctp
 |-  { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. }
141 67 140 cun
 |-  ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } )
142 7 6 141 csb
 |-  [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } )
143 1 3 2 2 142 cmpo
 |-  ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) )
144 0 143 wceq
 |-  "s = ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) )