Description: Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lindeps | |- linDepS = { <. s , m >. | -. s linIndS m } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clindeps | |- linDepS |
|
1 | vs | |- s |
|
2 | vm | |- m |
|
3 | 1 | cv | |- s |
4 | clininds | |- linIndS |
|
5 | 2 | cv | |- m |
6 | 3 5 4 | wbr | |- s linIndS m |
7 | 6 | wn | |- -. s linIndS m |
8 | 7 1 2 | copab | |- { <. s , m >. | -. s linIndS m } |
9 | 0 8 | wceq | |- linDepS = { <. s , m >. | -. s linIndS m } |