Metamath Proof Explorer


Definition df-lindeps

Description: Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019)

Ref Expression
Assertion df-lindeps linDepS = s m | ¬ s linIndS m

Detailed syntax breakdown

Step Hyp Ref Expression
0 clindeps class linDepS
1 vs setvar s
2 vm setvar m
3 1 cv setvar s
4 clininds class linIndS
5 2 cv setvar m
6 3 5 4 wbr wff s linIndS m
7 6 wn wff ¬ s linIndS m
8 7 1 2 copab class s m | ¬ s linIndS m
9 0 8 wceq wff linDepS = s m | ¬ s linIndS m