Metamath Proof Explorer


Definition df-lindeps

Description: Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019)

Ref Expression
Assertion df-lindeps linDepS = { ⟨ 𝑠 , 𝑚 ⟩ ∣ ¬ 𝑠 linIndS 𝑚 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clindeps linDepS
1 vs 𝑠
2 vm 𝑚
3 1 cv 𝑠
4 clininds linIndS
5 2 cv 𝑚
6 3 5 4 wbr 𝑠 linIndS 𝑚
7 6 wn ¬ 𝑠 linIndS 𝑚
8 7 1 2 copab { ⟨ 𝑠 , 𝑚 ⟩ ∣ ¬ 𝑠 linIndS 𝑚 }
9 0 8 wceq linDepS = { ⟨ 𝑠 , 𝑚 ⟩ ∣ ¬ 𝑠 linIndS 𝑚 }