Description: Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lindeps | ⊢ linDepS = { 〈 𝑠 , 𝑚 〉 ∣ ¬ 𝑠 linIndS 𝑚 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clindeps | ⊢ linDepS | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | vm | ⊢ 𝑚 | |
| 3 | 1 | cv | ⊢ 𝑠 |
| 4 | clininds | ⊢ linIndS | |
| 5 | 2 | cv | ⊢ 𝑚 |
| 6 | 3 5 4 | wbr | ⊢ 𝑠 linIndS 𝑚 |
| 7 | 6 | wn | ⊢ ¬ 𝑠 linIndS 𝑚 |
| 8 | 7 1 2 | copab | ⊢ { 〈 𝑠 , 𝑚 〉 ∣ ¬ 𝑠 linIndS 𝑚 } |
| 9 | 0 8 | wceq | ⊢ linDepS = { 〈 𝑠 , 𝑚 〉 ∣ ¬ 𝑠 linIndS 𝑚 } |