Description: Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lindeps | ⊢ linDepS = { 〈 𝑠 , 𝑚 〉 ∣ ¬ 𝑠 linIndS 𝑚 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clindeps | ⊢ linDepS | |
1 | vs | ⊢ 𝑠 | |
2 | vm | ⊢ 𝑚 | |
3 | 1 | cv | ⊢ 𝑠 |
4 | clininds | ⊢ linIndS | |
5 | 2 | cv | ⊢ 𝑚 |
6 | 3 5 4 | wbr | ⊢ 𝑠 linIndS 𝑚 |
7 | 6 | wn | ⊢ ¬ 𝑠 linIndS 𝑚 |
8 | 7 1 2 | copab | ⊢ { 〈 𝑠 , 𝑚 〉 ∣ ¬ 𝑠 linIndS 𝑚 } |
9 | 0 8 | wceq | ⊢ linDepS = { 〈 𝑠 , 𝑚 〉 ∣ ¬ 𝑠 linIndS 𝑚 } |