Step |
Hyp |
Ref |
Expression |
0 |
|
clmat |
|- litMat |
1 |
|
vm |
|- m |
2 |
|
cvv |
|- _V |
3 |
|
vi |
|- i |
4 |
|
c1 |
|- 1 |
5 |
|
cfz |
|- ... |
6 |
|
chash |
|- # |
7 |
1
|
cv |
|- m |
8 |
7 6
|
cfv |
|- ( # ` m ) |
9 |
4 8 5
|
co |
|- ( 1 ... ( # ` m ) ) |
10 |
|
vj |
|- j |
11 |
|
cc0 |
|- 0 |
12 |
11 7
|
cfv |
|- ( m ` 0 ) |
13 |
12 6
|
cfv |
|- ( # ` ( m ` 0 ) ) |
14 |
4 13 5
|
co |
|- ( 1 ... ( # ` ( m ` 0 ) ) ) |
15 |
3
|
cv |
|- i |
16 |
|
cmin |
|- - |
17 |
15 4 16
|
co |
|- ( i - 1 ) |
18 |
17 7
|
cfv |
|- ( m ` ( i - 1 ) ) |
19 |
10
|
cv |
|- j |
20 |
19 4 16
|
co |
|- ( j - 1 ) |
21 |
20 18
|
cfv |
|- ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) |
22 |
3 10 9 14 21
|
cmpo |
|- ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) |
23 |
1 2 22
|
cmpt |
|- ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
24 |
0 23
|
wceq |
|- litMat = ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |