| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clmat |  |-  litMat | 
						
							| 1 |  | vm |  |-  m | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vi |  |-  i | 
						
							| 4 |  | c1 |  |-  1 | 
						
							| 5 |  | cfz |  |-  ... | 
						
							| 6 |  | chash |  |-  # | 
						
							| 7 | 1 | cv |  |-  m | 
						
							| 8 | 7 6 | cfv |  |-  ( # ` m ) | 
						
							| 9 | 4 8 5 | co |  |-  ( 1 ... ( # ` m ) ) | 
						
							| 10 |  | vj |  |-  j | 
						
							| 11 |  | cc0 |  |-  0 | 
						
							| 12 | 11 7 | cfv |  |-  ( m ` 0 ) | 
						
							| 13 | 12 6 | cfv |  |-  ( # ` ( m ` 0 ) ) | 
						
							| 14 | 4 13 5 | co |  |-  ( 1 ... ( # ` ( m ` 0 ) ) ) | 
						
							| 15 | 3 | cv |  |-  i | 
						
							| 16 |  | cmin |  |-  - | 
						
							| 17 | 15 4 16 | co |  |-  ( i - 1 ) | 
						
							| 18 | 17 7 | cfv |  |-  ( m ` ( i - 1 ) ) | 
						
							| 19 | 10 | cv |  |-  j | 
						
							| 20 | 19 4 16 | co |  |-  ( j - 1 ) | 
						
							| 21 | 20 18 | cfv |  |-  ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) | 
						
							| 22 | 3 10 9 14 21 | cmpo |  |-  ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) | 
						
							| 23 | 1 2 22 | cmpt |  |-  ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 24 | 0 23 | wceq |  |-  litMat = ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |