| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clmat |
|- litMat |
| 1 |
|
vm |
|- m |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vi |
|- i |
| 4 |
|
c1 |
|- 1 |
| 5 |
|
cfz |
|- ... |
| 6 |
|
chash |
|- # |
| 7 |
1
|
cv |
|- m |
| 8 |
7 6
|
cfv |
|- ( # ` m ) |
| 9 |
4 8 5
|
co |
|- ( 1 ... ( # ` m ) ) |
| 10 |
|
vj |
|- j |
| 11 |
|
cc0 |
|- 0 |
| 12 |
11 7
|
cfv |
|- ( m ` 0 ) |
| 13 |
12 6
|
cfv |
|- ( # ` ( m ` 0 ) ) |
| 14 |
4 13 5
|
co |
|- ( 1 ... ( # ` ( m ` 0 ) ) ) |
| 15 |
3
|
cv |
|- i |
| 16 |
|
cmin |
|- - |
| 17 |
15 4 16
|
co |
|- ( i - 1 ) |
| 18 |
17 7
|
cfv |
|- ( m ` ( i - 1 ) ) |
| 19 |
10
|
cv |
|- j |
| 20 |
19 4 16
|
co |
|- ( j - 1 ) |
| 21 |
20 18
|
cfv |
|- ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) |
| 22 |
3 10 9 14 21
|
cmpo |
|- ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) |
| 23 |
1 2 22
|
cmpt |
|- ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
| 24 |
0 23
|
wceq |
|- litMat = ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |