Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( M e. V -> M e. _V ) |
2 |
|
fveq2 |
|- ( m = M -> ( # ` m ) = ( # ` M ) ) |
3 |
2
|
oveq2d |
|- ( m = M -> ( 1 ... ( # ` m ) ) = ( 1 ... ( # ` M ) ) ) |
4 |
|
fveq1 |
|- ( m = M -> ( m ` 0 ) = ( M ` 0 ) ) |
5 |
4
|
fveq2d |
|- ( m = M -> ( # ` ( m ` 0 ) ) = ( # ` ( M ` 0 ) ) ) |
6 |
5
|
oveq2d |
|- ( m = M -> ( 1 ... ( # ` ( m ` 0 ) ) ) = ( 1 ... ( # ` ( M ` 0 ) ) ) ) |
7 |
|
fveq1 |
|- ( m = M -> ( m ` ( i - 1 ) ) = ( M ` ( i - 1 ) ) ) |
8 |
7
|
fveq1d |
|- ( m = M -> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) = ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) |
9 |
3 6 8
|
mpoeq123dv |
|- ( m = M -> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) = ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
10 |
|
df-lmat |
|- litMat = ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
11 |
|
ovex |
|- ( 1 ... ( # ` M ) ) e. _V |
12 |
|
ovex |
|- ( 1 ... ( # ` ( M ` 0 ) ) ) e. _V |
13 |
11 12
|
mpoex |
|- ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) e. _V |
14 |
9 10 13
|
fvmpt |
|- ( M e. _V -> ( litMat ` M ) = ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
15 |
1 14
|
syl |
|- ( M e. V -> ( litMat ` M ) = ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |