| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( M e. V -> M e. _V ) | 
						
							| 2 |  | fveq2 |  |-  ( m = M -> ( # ` m ) = ( # ` M ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( m = M -> ( 1 ... ( # ` m ) ) = ( 1 ... ( # ` M ) ) ) | 
						
							| 4 |  | fveq1 |  |-  ( m = M -> ( m ` 0 ) = ( M ` 0 ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( m = M -> ( # ` ( m ` 0 ) ) = ( # ` ( M ` 0 ) ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( m = M -> ( 1 ... ( # ` ( m ` 0 ) ) ) = ( 1 ... ( # ` ( M ` 0 ) ) ) ) | 
						
							| 7 |  | fveq1 |  |-  ( m = M -> ( m ` ( i - 1 ) ) = ( M ` ( i - 1 ) ) ) | 
						
							| 8 | 7 | fveq1d |  |-  ( m = M -> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) = ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) | 
						
							| 9 | 3 6 8 | mpoeq123dv |  |-  ( m = M -> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) = ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 10 |  | df-lmat |  |-  litMat = ( m e. _V |-> ( i e. ( 1 ... ( # ` m ) ) , j e. ( 1 ... ( # ` ( m ` 0 ) ) ) |-> ( ( m ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 11 |  | ovex |  |-  ( 1 ... ( # ` M ) ) e. _V | 
						
							| 12 |  | ovex |  |-  ( 1 ... ( # ` ( M ` 0 ) ) ) e. _V | 
						
							| 13 | 11 12 | mpoex |  |-  ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) e. _V | 
						
							| 14 | 9 10 13 | fvmpt |  |-  ( M e. _V -> ( litMat ` M ) = ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 15 | 1 14 | syl |  |-  ( M e. V -> ( litMat ` M ) = ( i e. ( 1 ... ( # ` M ) ) , j e. ( 1 ... ( # ` ( M ` 0 ) ) ) |-> ( ( M ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |