| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
| 2 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ♯ ‘ 𝑚 ) = ( ♯ ‘ 𝑀 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 1 ... ( ♯ ‘ 𝑚 ) ) = ( 1 ... ( ♯ ‘ 𝑀 ) ) ) |
| 4 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ 0 ) = ( 𝑀 ‘ 0 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( ♯ ‘ ( 𝑚 ‘ 0 ) ) = ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) = ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ) |
| 7 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑖 − 1 ) ) = ( 𝑀 ‘ ( 𝑖 − 1 ) ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) |
| 9 |
3 6 8
|
mpoeq123dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
| 10 |
|
df-lmat |
⊢ litMat = ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
| 11 |
|
ovex |
⊢ ( 1 ... ( ♯ ‘ 𝑀 ) ) ∈ V |
| 12 |
|
ovex |
⊢ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ∈ V |
| 13 |
11 12
|
mpoex |
⊢ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ∈ V |
| 14 |
9 10 13
|
fvmpt |
⊢ ( 𝑀 ∈ V → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
| 15 |
1 14
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |