| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝑀  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( ♯ ‘ 𝑚 )  =  ( ♯ ‘ 𝑀 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( 1 ... ( ♯ ‘ 𝑚 ) )  =  ( 1 ... ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 4 |  | fveq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚 ‘ 0 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑚  =  𝑀  →  ( ♯ ‘ ( 𝑚 ‘ 0 ) )  =  ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )  =  ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚 ‘ ( 𝑖  −  1 ) )  =  ( 𝑀 ‘ ( 𝑖  −  1 ) ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) )  =  ( ( 𝑀 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 9 | 3 6 8 | mpoeq123dv | ⊢ ( 𝑚  =  𝑀  →  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑚 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )  ↦  ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) )  =  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑀 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) )  ↦  ( ( 𝑀 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 10 |  | df-lmat | ⊢ litMat  =  ( 𝑚  ∈  V  ↦  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑚 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )  ↦  ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 11 |  | ovex | ⊢ ( 1 ... ( ♯ ‘ 𝑀 ) )  ∈  V | 
						
							| 12 |  | ovex | ⊢ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) )  ∈  V | 
						
							| 13 | 11 12 | mpoex | ⊢ ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑀 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) )  ↦  ( ( 𝑀 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) )  ∈  V | 
						
							| 14 | 9 10 13 | fvmpt | ⊢ ( 𝑀  ∈  V  →  ( litMat ‘ 𝑀 )  =  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑀 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) )  ↦  ( ( 𝑀 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝑀  ∈  𝑉  →  ( litMat ‘ 𝑀 )  =  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑀 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) )  ↦  ( ( 𝑀 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) |