Metamath Proof Explorer


Theorem lmatval

Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Assertion lmatval ( 𝑀𝑉 → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝑀𝑉𝑀 ∈ V )
2 fveq2 ( 𝑚 = 𝑀 → ( ♯ ‘ 𝑚 ) = ( ♯ ‘ 𝑀 ) )
3 2 oveq2d ( 𝑚 = 𝑀 → ( 1 ... ( ♯ ‘ 𝑚 ) ) = ( 1 ... ( ♯ ‘ 𝑀 ) ) )
4 fveq1 ( 𝑚 = 𝑀 → ( 𝑚 ‘ 0 ) = ( 𝑀 ‘ 0 ) )
5 4 fveq2d ( 𝑚 = 𝑀 → ( ♯ ‘ ( 𝑚 ‘ 0 ) ) = ( ♯ ‘ ( 𝑀 ‘ 0 ) ) )
6 5 oveq2d ( 𝑚 = 𝑀 → ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) = ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) )
7 fveq1 ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑖 − 1 ) ) = ( 𝑀 ‘ ( 𝑖 − 1 ) ) )
8 7 fveq1d ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) )
9 3 6 8 mpoeq123dv ( 𝑚 = 𝑀 → ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )
10 df-lmat litMat = ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )
11 ovex ( 1 ... ( ♯ ‘ 𝑀 ) ) ∈ V
12 ovex ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ∈ V
13 11 12 mpoex ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ∈ V
14 9 10 13 fvmpt ( 𝑀 ∈ V → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )
15 1 14 syl ( 𝑀𝑉 → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )