Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
2 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ♯ ‘ 𝑚 ) = ( ♯ ‘ 𝑀 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 1 ... ( ♯ ‘ 𝑚 ) ) = ( 1 ... ( ♯ ‘ 𝑀 ) ) ) |
4 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ 0 ) = ( 𝑀 ‘ 0 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( ♯ ‘ ( 𝑚 ‘ 0 ) ) = ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) = ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ) |
7 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑖 − 1 ) ) = ( 𝑀 ‘ ( 𝑖 − 1 ) ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) |
9 |
3 6 8
|
mpoeq123dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
10 |
|
df-lmat |
⊢ litMat = ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
11 |
|
ovex |
⊢ ( 1 ... ( ♯ ‘ 𝑀 ) ) ∈ V |
12 |
|
ovex |
⊢ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ∈ V |
13 |
11 12
|
mpoex |
⊢ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ∈ V |
14 |
9 10 13
|
fvmpt |
⊢ ( 𝑀 ∈ V → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
15 |
1 14
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( litMat ‘ 𝑀 ) = ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑀 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑀 ‘ 0 ) ) ) ↦ ( ( 𝑀 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |