Step |
Hyp |
Ref |
Expression |
0 |
|
clmat |
⊢ litMat |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cvv |
⊢ V |
3 |
|
vi |
⊢ 𝑖 |
4 |
|
c1 |
⊢ 1 |
5 |
|
cfz |
⊢ ... |
6 |
|
chash |
⊢ ♯ |
7 |
1
|
cv |
⊢ 𝑚 |
8 |
7 6
|
cfv |
⊢ ( ♯ ‘ 𝑚 ) |
9 |
4 8 5
|
co |
⊢ ( 1 ... ( ♯ ‘ 𝑚 ) ) |
10 |
|
vj |
⊢ 𝑗 |
11 |
|
cc0 |
⊢ 0 |
12 |
11 7
|
cfv |
⊢ ( 𝑚 ‘ 0 ) |
13 |
12 6
|
cfv |
⊢ ( ♯ ‘ ( 𝑚 ‘ 0 ) ) |
14 |
4 13 5
|
co |
⊢ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) |
15 |
3
|
cv |
⊢ 𝑖 |
16 |
|
cmin |
⊢ − |
17 |
15 4 16
|
co |
⊢ ( 𝑖 − 1 ) |
18 |
17 7
|
cfv |
⊢ ( 𝑚 ‘ ( 𝑖 − 1 ) ) |
19 |
10
|
cv |
⊢ 𝑗 |
20 |
19 4 16
|
co |
⊢ ( 𝑗 − 1 ) |
21 |
20 18
|
cfv |
⊢ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) |
22 |
3 10 9 14 21
|
cmpo |
⊢ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) |
23 |
1 2 22
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |
24 |
0 23
|
wceq |
⊢ litMat = ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) ) |