| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clmat | ⊢ litMat | 
						
							| 1 |  | vm | ⊢ 𝑚 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vi | ⊢ 𝑖 | 
						
							| 4 |  | c1 | ⊢ 1 | 
						
							| 5 |  | cfz | ⊢ ... | 
						
							| 6 |  | chash | ⊢ ♯ | 
						
							| 7 | 1 | cv | ⊢ 𝑚 | 
						
							| 8 | 7 6 | cfv | ⊢ ( ♯ ‘ 𝑚 ) | 
						
							| 9 | 4 8 5 | co | ⊢ ( 1 ... ( ♯ ‘ 𝑚 ) ) | 
						
							| 10 |  | vj | ⊢ 𝑗 | 
						
							| 11 |  | cc0 | ⊢ 0 | 
						
							| 12 | 11 7 | cfv | ⊢ ( 𝑚 ‘ 0 ) | 
						
							| 13 | 12 6 | cfv | ⊢ ( ♯ ‘ ( 𝑚 ‘ 0 ) ) | 
						
							| 14 | 4 13 5 | co | ⊢ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) | 
						
							| 15 | 3 | cv | ⊢ 𝑖 | 
						
							| 16 |  | cmin | ⊢  − | 
						
							| 17 | 15 4 16 | co | ⊢ ( 𝑖  −  1 ) | 
						
							| 18 | 17 7 | cfv | ⊢ ( 𝑚 ‘ ( 𝑖  −  1 ) ) | 
						
							| 19 | 10 | cv | ⊢ 𝑗 | 
						
							| 20 | 19 4 16 | co | ⊢ ( 𝑗  −  1 ) | 
						
							| 21 | 20 18 | cfv | ⊢ ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) | 
						
							| 22 | 3 10 9 14 21 | cmpo | ⊢ ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑚 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )  ↦  ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 23 | 1 2 22 | cmpt | ⊢ ( 𝑚  ∈  V  ↦  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑚 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )  ↦  ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 24 | 0 23 | wceq | ⊢ litMat  =  ( 𝑚  ∈  V  ↦  ( 𝑖  ∈  ( 1 ... ( ♯ ‘ 𝑚 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )  ↦  ( ( 𝑚 ‘ ( 𝑖  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) |