Metamath Proof Explorer


Definition df-lmat

Description: Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Assertion df-lmat litMat = ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmat litMat
1 vm 𝑚
2 cvv V
3 vi 𝑖
4 c1 1
5 cfz ...
6 chash
7 1 cv 𝑚
8 7 6 cfv ( ♯ ‘ 𝑚 )
9 4 8 5 co ( 1 ... ( ♯ ‘ 𝑚 ) )
10 vj 𝑗
11 cc0 0
12 11 7 cfv ( 𝑚 ‘ 0 )
13 12 6 cfv ( ♯ ‘ ( 𝑚 ‘ 0 ) )
14 4 13 5 co ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) )
15 3 cv 𝑖
16 cmin
17 15 4 16 co ( 𝑖 − 1 )
18 17 7 cfv ( 𝑚 ‘ ( 𝑖 − 1 ) )
19 10 cv 𝑗
20 19 4 16 co ( 𝑗 − 1 )
21 20 18 cfv ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) )
22 3 10 9 14 21 cmpo ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) )
23 1 2 22 cmpt ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )
24 0 23 wceq litMat = ( 𝑚 ∈ V ↦ ( 𝑖 ∈ ( 1 ... ( ♯ ‘ 𝑚 ) ) , 𝑗 ∈ ( 1 ... ( ♯ ‘ ( 𝑚 ‘ 0 ) ) ) ↦ ( ( 𝑚 ‘ ( 𝑖 − 1 ) ) ‘ ( 𝑗 − 1 ) ) ) )