| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmatfval.m |
|- M = ( litMat ` W ) |
| 2 |
|
lmatfval.n |
|- ( ph -> N e. NN ) |
| 3 |
|
lmatfval.w |
|- ( ph -> W e. Word Word V ) |
| 4 |
|
lmatfval.1 |
|- ( ph -> ( # ` W ) = N ) |
| 5 |
|
lmatfval.2 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( # ` ( W ` i ) ) = N ) |
| 6 |
|
lmatfval.i |
|- ( ph -> I e. ( 1 ... N ) ) |
| 7 |
|
lmatfval.j |
|- ( ph -> J e. ( 1 ... N ) ) |
| 8 |
|
lmatval |
|- ( W e. Word Word V -> ( litMat ` W ) = ( i e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
| 9 |
3 8
|
syl |
|- ( ph -> ( litMat ` W ) = ( i e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
| 10 |
1 9
|
eqtrid |
|- ( ph -> M = ( i e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> i = I ) |
| 12 |
11
|
fvoveq1d |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> ( W ` ( i - 1 ) ) = ( W ` ( I - 1 ) ) ) |
| 13 |
|
simprr |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> j = J ) |
| 14 |
13
|
oveq1d |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> ( j - 1 ) = ( J - 1 ) ) |
| 15 |
12 14
|
fveq12d |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) = ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) ) |
| 16 |
4
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` W ) ) = ( 1 ... N ) ) |
| 17 |
6 16
|
eleqtrrd |
|- ( ph -> I e. ( 1 ... ( # ` W ) ) ) |
| 18 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 20 |
2 19
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 21 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
| 23 |
|
fz1fzo0m1 |
|- ( 1 e. ( 1 ... N ) -> ( 1 - 1 ) e. ( 0 ..^ N ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( 1 - 1 ) e. ( 0 ..^ N ) ) |
| 25 |
18 24
|
eqeltrrid |
|- ( ph -> 0 e. ( 0 ..^ N ) ) |
| 26 |
|
simpr |
|- ( ( ph /\ i = 0 ) -> i = 0 ) |
| 27 |
26
|
eleq1d |
|- ( ( ph /\ i = 0 ) -> ( i e. ( 0 ..^ N ) <-> 0 e. ( 0 ..^ N ) ) ) |
| 28 |
26
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( W ` i ) = ( W ` 0 ) ) |
| 29 |
28
|
fveqeq2d |
|- ( ( ph /\ i = 0 ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` 0 ) ) = N ) ) |
| 30 |
27 29
|
imbi12d |
|- ( ( ph /\ i = 0 ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) ) |
| 31 |
5
|
ex |
|- ( ph -> ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) ) |
| 32 |
25 30 31
|
vtocld |
|- ( ph -> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) |
| 33 |
25 32
|
mpd |
|- ( ph -> ( # ` ( W ` 0 ) ) = N ) |
| 34 |
33
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` ( W ` 0 ) ) ) = ( 1 ... N ) ) |
| 35 |
7 34
|
eleqtrrd |
|- ( ph -> J e. ( 1 ... ( # ` ( W ` 0 ) ) ) ) |
| 36 |
|
fz1fzo0m1 |
|- ( I e. ( 1 ... N ) -> ( I - 1 ) e. ( 0 ..^ N ) ) |
| 37 |
6 36
|
syl |
|- ( ph -> ( I - 1 ) e. ( 0 ..^ N ) ) |
| 38 |
4
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) |
| 39 |
37 38
|
eleqtrrd |
|- ( ph -> ( I - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 40 |
|
wrdsymbcl |
|- ( ( W e. Word Word V /\ ( I - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( I - 1 ) ) e. Word V ) |
| 41 |
3 39 40
|
syl2anc |
|- ( ph -> ( W ` ( I - 1 ) ) e. Word V ) |
| 42 |
|
fz1fzo0m1 |
|- ( J e. ( 1 ... N ) -> ( J - 1 ) e. ( 0 ..^ N ) ) |
| 43 |
7 42
|
syl |
|- ( ph -> ( J - 1 ) e. ( 0 ..^ N ) ) |
| 44 |
|
simpr |
|- ( ( ph /\ i = ( I - 1 ) ) -> i = ( I - 1 ) ) |
| 45 |
44
|
eleq1d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( i e. ( 0 ..^ N ) <-> ( I - 1 ) e. ( 0 ..^ N ) ) ) |
| 46 |
44
|
fveq2d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( W ` i ) = ( W ` ( I - 1 ) ) ) |
| 47 |
46
|
fveqeq2d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` ( I - 1 ) ) ) = N ) ) |
| 48 |
45 47
|
imbi12d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( ( I - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( I - 1 ) ) ) = N ) ) ) |
| 49 |
37 48 31
|
vtocld |
|- ( ph -> ( ( I - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( I - 1 ) ) ) = N ) ) |
| 50 |
37 49
|
mpd |
|- ( ph -> ( # ` ( W ` ( I - 1 ) ) ) = N ) |
| 51 |
50
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( W ` ( I - 1 ) ) ) ) = ( 0 ..^ N ) ) |
| 52 |
43 51
|
eleqtrrd |
|- ( ph -> ( J - 1 ) e. ( 0 ..^ ( # ` ( W ` ( I - 1 ) ) ) ) ) |
| 53 |
|
wrdsymbcl |
|- ( ( ( W ` ( I - 1 ) ) e. Word V /\ ( J - 1 ) e. ( 0 ..^ ( # ` ( W ` ( I - 1 ) ) ) ) ) -> ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) e. V ) |
| 54 |
41 52 53
|
syl2anc |
|- ( ph -> ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) e. V ) |
| 55 |
10 15 17 35 54
|
ovmpod |
|- ( ph -> ( I M J ) = ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) ) |