Step |
Hyp |
Ref |
Expression |
1 |
|
lmatfval.m |
|- M = ( litMat ` W ) |
2 |
|
lmatfval.n |
|- ( ph -> N e. NN ) |
3 |
|
lmatfval.w |
|- ( ph -> W e. Word Word V ) |
4 |
|
lmatfval.1 |
|- ( ph -> ( # ` W ) = N ) |
5 |
|
lmatfval.2 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( # ` ( W ` i ) ) = N ) |
6 |
|
lmatfval.i |
|- ( ph -> I e. ( 1 ... N ) ) |
7 |
|
lmatfval.j |
|- ( ph -> J e. ( 1 ... N ) ) |
8 |
|
lmatval |
|- ( W e. Word Word V -> ( litMat ` W ) = ( i e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
9 |
3 8
|
syl |
|- ( ph -> ( litMat ` W ) = ( i e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
10 |
1 9
|
syl5eq |
|- ( ph -> M = ( i e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) ) ) |
11 |
|
simprl |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> i = I ) |
12 |
11
|
fvoveq1d |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> ( W ` ( i - 1 ) ) = ( W ` ( I - 1 ) ) ) |
13 |
|
simprr |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> j = J ) |
14 |
13
|
oveq1d |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> ( j - 1 ) = ( J - 1 ) ) |
15 |
12 14
|
fveq12d |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> ( ( W ` ( i - 1 ) ) ` ( j - 1 ) ) = ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) ) |
16 |
4
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` W ) ) = ( 1 ... N ) ) |
17 |
6 16
|
eleqtrrd |
|- ( ph -> I e. ( 1 ... ( # ` W ) ) ) |
18 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
20 |
2 19
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
21 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
22 |
20 21
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
23 |
|
fz1fzo0m1 |
|- ( 1 e. ( 1 ... N ) -> ( 1 - 1 ) e. ( 0 ..^ N ) ) |
24 |
22 23
|
syl |
|- ( ph -> ( 1 - 1 ) e. ( 0 ..^ N ) ) |
25 |
18 24
|
eqeltrrid |
|- ( ph -> 0 e. ( 0 ..^ N ) ) |
26 |
|
simpr |
|- ( ( ph /\ i = 0 ) -> i = 0 ) |
27 |
26
|
eleq1d |
|- ( ( ph /\ i = 0 ) -> ( i e. ( 0 ..^ N ) <-> 0 e. ( 0 ..^ N ) ) ) |
28 |
26
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( W ` i ) = ( W ` 0 ) ) |
29 |
28
|
fveqeq2d |
|- ( ( ph /\ i = 0 ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` 0 ) ) = N ) ) |
30 |
27 29
|
imbi12d |
|- ( ( ph /\ i = 0 ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) ) |
31 |
5
|
ex |
|- ( ph -> ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) ) |
32 |
25 30 31
|
vtocld |
|- ( ph -> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) |
33 |
25 32
|
mpd |
|- ( ph -> ( # ` ( W ` 0 ) ) = N ) |
34 |
33
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` ( W ` 0 ) ) ) = ( 1 ... N ) ) |
35 |
7 34
|
eleqtrrd |
|- ( ph -> J e. ( 1 ... ( # ` ( W ` 0 ) ) ) ) |
36 |
|
fz1fzo0m1 |
|- ( I e. ( 1 ... N ) -> ( I - 1 ) e. ( 0 ..^ N ) ) |
37 |
6 36
|
syl |
|- ( ph -> ( I - 1 ) e. ( 0 ..^ N ) ) |
38 |
4
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) |
39 |
37 38
|
eleqtrrd |
|- ( ph -> ( I - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
40 |
|
wrdsymbcl |
|- ( ( W e. Word Word V /\ ( I - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( I - 1 ) ) e. Word V ) |
41 |
3 39 40
|
syl2anc |
|- ( ph -> ( W ` ( I - 1 ) ) e. Word V ) |
42 |
|
fz1fzo0m1 |
|- ( J e. ( 1 ... N ) -> ( J - 1 ) e. ( 0 ..^ N ) ) |
43 |
7 42
|
syl |
|- ( ph -> ( J - 1 ) e. ( 0 ..^ N ) ) |
44 |
|
simpr |
|- ( ( ph /\ i = ( I - 1 ) ) -> i = ( I - 1 ) ) |
45 |
44
|
eleq1d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( i e. ( 0 ..^ N ) <-> ( I - 1 ) e. ( 0 ..^ N ) ) ) |
46 |
44
|
fveq2d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( W ` i ) = ( W ` ( I - 1 ) ) ) |
47 |
46
|
fveqeq2d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` ( I - 1 ) ) ) = N ) ) |
48 |
45 47
|
imbi12d |
|- ( ( ph /\ i = ( I - 1 ) ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( ( I - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( I - 1 ) ) ) = N ) ) ) |
49 |
37 48 31
|
vtocld |
|- ( ph -> ( ( I - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( I - 1 ) ) ) = N ) ) |
50 |
37 49
|
mpd |
|- ( ph -> ( # ` ( W ` ( I - 1 ) ) ) = N ) |
51 |
50
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( W ` ( I - 1 ) ) ) ) = ( 0 ..^ N ) ) |
52 |
43 51
|
eleqtrrd |
|- ( ph -> ( J - 1 ) e. ( 0 ..^ ( # ` ( W ` ( I - 1 ) ) ) ) ) |
53 |
|
wrdsymbcl |
|- ( ( ( W ` ( I - 1 ) ) e. Word V /\ ( J - 1 ) e. ( 0 ..^ ( # ` ( W ` ( I - 1 ) ) ) ) ) -> ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) e. V ) |
54 |
41 52 53
|
syl2anc |
|- ( ph -> ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) e. V ) |
55 |
10 15 17 35 54
|
ovmpod |
|- ( ph -> ( I M J ) = ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) ) |