| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmatfval.m |
|
| 2 |
|
lmatfval.n |
|
| 3 |
|
lmatfval.w |
|
| 4 |
|
lmatfval.1 |
|
| 5 |
|
lmatfval.2 |
|
| 6 |
|
lmatfval.i |
|
| 7 |
|
lmatfval.j |
|
| 8 |
|
lmatval |
|
| 9 |
3 8
|
syl |
|
| 10 |
1 9
|
eqtrid |
|
| 11 |
|
simprl |
|
| 12 |
11
|
fvoveq1d |
|
| 13 |
|
simprr |
|
| 14 |
13
|
oveq1d |
|
| 15 |
12 14
|
fveq12d |
|
| 16 |
4
|
oveq2d |
|
| 17 |
6 16
|
eleqtrrd |
|
| 18 |
|
1m1e0 |
|
| 19 |
|
nnuz |
|
| 20 |
2 19
|
eleqtrdi |
|
| 21 |
|
eluzfz1 |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
fz1fzo0m1 |
|
| 24 |
22 23
|
syl |
|
| 25 |
18 24
|
eqeltrrid |
|
| 26 |
|
simpr |
|
| 27 |
26
|
eleq1d |
|
| 28 |
26
|
fveq2d |
|
| 29 |
28
|
fveqeq2d |
|
| 30 |
27 29
|
imbi12d |
|
| 31 |
5
|
ex |
|
| 32 |
25 30 31
|
vtocld |
|
| 33 |
25 32
|
mpd |
|
| 34 |
33
|
oveq2d |
|
| 35 |
7 34
|
eleqtrrd |
|
| 36 |
|
fz1fzo0m1 |
|
| 37 |
6 36
|
syl |
|
| 38 |
4
|
oveq2d |
|
| 39 |
37 38
|
eleqtrrd |
|
| 40 |
|
wrdsymbcl |
|
| 41 |
3 39 40
|
syl2anc |
|
| 42 |
|
fz1fzo0m1 |
|
| 43 |
7 42
|
syl |
|
| 44 |
|
simpr |
|
| 45 |
44
|
eleq1d |
|
| 46 |
44
|
fveq2d |
|
| 47 |
46
|
fveqeq2d |
|
| 48 |
45 47
|
imbi12d |
|
| 49 |
37 48 31
|
vtocld |
|
| 50 |
37 49
|
mpd |
|
| 51 |
50
|
oveq2d |
|
| 52 |
43 51
|
eleqtrrd |
|
| 53 |
|
wrdsymbcl |
|
| 54 |
41 52 53
|
syl2anc |
|
| 55 |
10 15 17 35 54
|
ovmpod |
|