Step |
Hyp |
Ref |
Expression |
1 |
|
lmatfval.m |
|- M = ( litMat ` W ) |
2 |
|
lmatfval.n |
|- ( ph -> N e. NN ) |
3 |
|
lmatfval.w |
|- ( ph -> W e. Word Word V ) |
4 |
|
lmatfval.1 |
|- ( ph -> ( # ` W ) = N ) |
5 |
|
lmatfval.2 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( # ` ( W ` i ) ) = N ) |
6 |
|
lmatfvlem.1 |
|- K e. NN0 |
7 |
|
lmatfvlem.2 |
|- L e. NN0 |
8 |
|
lmatfvlem.3 |
|- I <_ N |
9 |
|
lmatfvlem.4 |
|- J <_ N |
10 |
|
lmatfvlem.5 |
|- ( K + 1 ) = I |
11 |
|
lmatfvlem.6 |
|- ( L + 1 ) = J |
12 |
|
lmatfvlem.7 |
|- ( W ` K ) = X |
13 |
|
lmatfvlem.8 |
|- ( ph -> ( X ` L ) = Y ) |
14 |
|
nn0p1nn |
|- ( K e. NN0 -> ( K + 1 ) e. NN ) |
15 |
6 14
|
ax-mp |
|- ( K + 1 ) e. NN |
16 |
10 15
|
eqeltrri |
|- I e. NN |
17 |
|
nnge1 |
|- ( I e. NN -> 1 <_ I ) |
18 |
16 17
|
ax-mp |
|- 1 <_ I |
19 |
18 8
|
pm3.2i |
|- ( 1 <_ I /\ I <_ N ) |
20 |
19
|
a1i |
|- ( ph -> ( 1 <_ I /\ I <_ N ) ) |
21 |
|
nnz |
|- ( I e. NN -> I e. ZZ ) |
22 |
16 21
|
ax-mp |
|- I e. ZZ |
23 |
22
|
a1i |
|- ( ph -> I e. ZZ ) |
24 |
|
1z |
|- 1 e. ZZ |
25 |
24
|
a1i |
|- ( ph -> 1 e. ZZ ) |
26 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
27 |
|
elfz |
|- ( ( I e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( I e. ( 1 ... N ) <-> ( 1 <_ I /\ I <_ N ) ) ) |
28 |
23 25 26 27
|
syl3anc |
|- ( ph -> ( I e. ( 1 ... N ) <-> ( 1 <_ I /\ I <_ N ) ) ) |
29 |
20 28
|
mpbird |
|- ( ph -> I e. ( 1 ... N ) ) |
30 |
|
nn0p1nn |
|- ( L e. NN0 -> ( L + 1 ) e. NN ) |
31 |
7 30
|
ax-mp |
|- ( L + 1 ) e. NN |
32 |
11 31
|
eqeltrri |
|- J e. NN |
33 |
|
nnge1 |
|- ( J e. NN -> 1 <_ J ) |
34 |
32 33
|
ax-mp |
|- 1 <_ J |
35 |
34 9
|
pm3.2i |
|- ( 1 <_ J /\ J <_ N ) |
36 |
35
|
a1i |
|- ( ph -> ( 1 <_ J /\ J <_ N ) ) |
37 |
|
nnz |
|- ( J e. NN -> J e. ZZ ) |
38 |
32 37
|
ax-mp |
|- J e. ZZ |
39 |
38
|
a1i |
|- ( ph -> J e. ZZ ) |
40 |
|
elfz |
|- ( ( J e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( J e. ( 1 ... N ) <-> ( 1 <_ J /\ J <_ N ) ) ) |
41 |
39 25 26 40
|
syl3anc |
|- ( ph -> ( J e. ( 1 ... N ) <-> ( 1 <_ J /\ J <_ N ) ) ) |
42 |
36 41
|
mpbird |
|- ( ph -> J e. ( 1 ... N ) ) |
43 |
1 2 3 4 5 29 42
|
lmatfval |
|- ( ph -> ( I M J ) = ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) ) |
44 |
6
|
nn0cni |
|- K e. CC |
45 |
|
ax-1cn |
|- 1 e. CC |
46 |
44 45
|
pncan3oi |
|- ( ( K + 1 ) - 1 ) = K |
47 |
10
|
oveq1i |
|- ( ( K + 1 ) - 1 ) = ( I - 1 ) |
48 |
46 47
|
eqtr3i |
|- K = ( I - 1 ) |
49 |
48
|
fveq2i |
|- ( W ` K ) = ( W ` ( I - 1 ) ) |
50 |
49 12
|
eqtr3i |
|- ( W ` ( I - 1 ) ) = X |
51 |
50
|
a1i |
|- ( ph -> ( W ` ( I - 1 ) ) = X ) |
52 |
51
|
fveq1d |
|- ( ph -> ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) = ( X ` ( J - 1 ) ) ) |
53 |
7
|
nn0cni |
|- L e. CC |
54 |
53 45
|
pncan3oi |
|- ( ( L + 1 ) - 1 ) = L |
55 |
11
|
oveq1i |
|- ( ( L + 1 ) - 1 ) = ( J - 1 ) |
56 |
54 55
|
eqtr3i |
|- L = ( J - 1 ) |
57 |
56
|
a1i |
|- ( ph -> L = ( J - 1 ) ) |
58 |
57
|
fveq2d |
|- ( ph -> ( X ` L ) = ( X ` ( J - 1 ) ) ) |
59 |
58 13
|
eqtr3d |
|- ( ph -> ( X ` ( J - 1 ) ) = Y ) |
60 |
43 52 59
|
3eqtrd |
|- ( ph -> ( I M J ) = Y ) |