| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmatfval.m |  |-  M = ( litMat ` W ) | 
						
							| 2 |  | lmatfval.n |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | lmatfval.w |  |-  ( ph -> W e. Word Word V ) | 
						
							| 4 |  | lmatfval.1 |  |-  ( ph -> ( # ` W ) = N ) | 
						
							| 5 |  | lmatfval.2 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( # ` ( W ` i ) ) = N ) | 
						
							| 6 |  | lmatfvlem.1 |  |-  K e. NN0 | 
						
							| 7 |  | lmatfvlem.2 |  |-  L e. NN0 | 
						
							| 8 |  | lmatfvlem.3 |  |-  I <_ N | 
						
							| 9 |  | lmatfvlem.4 |  |-  J <_ N | 
						
							| 10 |  | lmatfvlem.5 |  |-  ( K + 1 ) = I | 
						
							| 11 |  | lmatfvlem.6 |  |-  ( L + 1 ) = J | 
						
							| 12 |  | lmatfvlem.7 |  |-  ( W ` K ) = X | 
						
							| 13 |  | lmatfvlem.8 |  |-  ( ph -> ( X ` L ) = Y ) | 
						
							| 14 |  | nn0p1nn |  |-  ( K e. NN0 -> ( K + 1 ) e. NN ) | 
						
							| 15 | 6 14 | ax-mp |  |-  ( K + 1 ) e. NN | 
						
							| 16 | 10 15 | eqeltrri |  |-  I e. NN | 
						
							| 17 |  | nnge1 |  |-  ( I e. NN -> 1 <_ I ) | 
						
							| 18 | 16 17 | ax-mp |  |-  1 <_ I | 
						
							| 19 | 18 8 | pm3.2i |  |-  ( 1 <_ I /\ I <_ N ) | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ( 1 <_ I /\ I <_ N ) ) | 
						
							| 21 |  | nnz |  |-  ( I e. NN -> I e. ZZ ) | 
						
							| 22 | 16 21 | ax-mp |  |-  I e. ZZ | 
						
							| 23 | 22 | a1i |  |-  ( ph -> I e. ZZ ) | 
						
							| 24 |  | 1z |  |-  1 e. ZZ | 
						
							| 25 | 24 | a1i |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 26 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 27 |  | elfz |  |-  ( ( I e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( I e. ( 1 ... N ) <-> ( 1 <_ I /\ I <_ N ) ) ) | 
						
							| 28 | 23 25 26 27 | syl3anc |  |-  ( ph -> ( I e. ( 1 ... N ) <-> ( 1 <_ I /\ I <_ N ) ) ) | 
						
							| 29 | 20 28 | mpbird |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 30 |  | nn0p1nn |  |-  ( L e. NN0 -> ( L + 1 ) e. NN ) | 
						
							| 31 | 7 30 | ax-mp |  |-  ( L + 1 ) e. NN | 
						
							| 32 | 11 31 | eqeltrri |  |-  J e. NN | 
						
							| 33 |  | nnge1 |  |-  ( J e. NN -> 1 <_ J ) | 
						
							| 34 | 32 33 | ax-mp |  |-  1 <_ J | 
						
							| 35 | 34 9 | pm3.2i |  |-  ( 1 <_ J /\ J <_ N ) | 
						
							| 36 | 35 | a1i |  |-  ( ph -> ( 1 <_ J /\ J <_ N ) ) | 
						
							| 37 |  | nnz |  |-  ( J e. NN -> J e. ZZ ) | 
						
							| 38 | 32 37 | ax-mp |  |-  J e. ZZ | 
						
							| 39 | 38 | a1i |  |-  ( ph -> J e. ZZ ) | 
						
							| 40 |  | elfz |  |-  ( ( J e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( J e. ( 1 ... N ) <-> ( 1 <_ J /\ J <_ N ) ) ) | 
						
							| 41 | 39 25 26 40 | syl3anc |  |-  ( ph -> ( J e. ( 1 ... N ) <-> ( 1 <_ J /\ J <_ N ) ) ) | 
						
							| 42 | 36 41 | mpbird |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 43 | 1 2 3 4 5 29 42 | lmatfval |  |-  ( ph -> ( I M J ) = ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) ) | 
						
							| 44 | 6 | nn0cni |  |-  K e. CC | 
						
							| 45 |  | ax-1cn |  |-  1 e. CC | 
						
							| 46 | 44 45 | pncan3oi |  |-  ( ( K + 1 ) - 1 ) = K | 
						
							| 47 | 10 | oveq1i |  |-  ( ( K + 1 ) - 1 ) = ( I - 1 ) | 
						
							| 48 | 46 47 | eqtr3i |  |-  K = ( I - 1 ) | 
						
							| 49 | 48 | fveq2i |  |-  ( W ` K ) = ( W ` ( I - 1 ) ) | 
						
							| 50 | 49 12 | eqtr3i |  |-  ( W ` ( I - 1 ) ) = X | 
						
							| 51 | 50 | a1i |  |-  ( ph -> ( W ` ( I - 1 ) ) = X ) | 
						
							| 52 | 51 | fveq1d |  |-  ( ph -> ( ( W ` ( I - 1 ) ) ` ( J - 1 ) ) = ( X ` ( J - 1 ) ) ) | 
						
							| 53 | 7 | nn0cni |  |-  L e. CC | 
						
							| 54 | 53 45 | pncan3oi |  |-  ( ( L + 1 ) - 1 ) = L | 
						
							| 55 | 11 | oveq1i |  |-  ( ( L + 1 ) - 1 ) = ( J - 1 ) | 
						
							| 56 | 54 55 | eqtr3i |  |-  L = ( J - 1 ) | 
						
							| 57 | 56 | a1i |  |-  ( ph -> L = ( J - 1 ) ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ph -> ( X ` L ) = ( X ` ( J - 1 ) ) ) | 
						
							| 59 | 58 13 | eqtr3d |  |-  ( ph -> ( X ` ( J - 1 ) ) = Y ) | 
						
							| 60 | 43 52 59 | 3eqtrd |  |-  ( ph -> ( I M J ) = Y ) |