| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmatfval.m | ⊢ 𝑀  =  ( litMat ‘ 𝑊 ) | 
						
							| 2 |  | lmatfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | lmatfval.w | ⊢ ( 𝜑  →  𝑊  ∈  Word  Word  𝑉 ) | 
						
							| 4 |  | lmatfval.1 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  𝑁 ) | 
						
							| 5 |  | lmatfval.2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁 ) | 
						
							| 6 |  | lmatfvlem.1 | ⊢ 𝐾  ∈  ℕ0 | 
						
							| 7 |  | lmatfvlem.2 | ⊢ 𝐿  ∈  ℕ0 | 
						
							| 8 |  | lmatfvlem.3 | ⊢ 𝐼  ≤  𝑁 | 
						
							| 9 |  | lmatfvlem.4 | ⊢ 𝐽  ≤  𝑁 | 
						
							| 10 |  | lmatfvlem.5 | ⊢ ( 𝐾  +  1 )  =  𝐼 | 
						
							| 11 |  | lmatfvlem.6 | ⊢ ( 𝐿  +  1 )  =  𝐽 | 
						
							| 12 |  | lmatfvlem.7 | ⊢ ( 𝑊 ‘ 𝐾 )  =  𝑋 | 
						
							| 13 |  | lmatfvlem.8 | ⊢ ( 𝜑  →  ( 𝑋 ‘ 𝐿 )  =  𝑌 ) | 
						
							| 14 |  | nn0p1nn | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  +  1 )  ∈  ℕ ) | 
						
							| 15 | 6 14 | ax-mp | ⊢ ( 𝐾  +  1 )  ∈  ℕ | 
						
							| 16 | 10 15 | eqeltrri | ⊢ 𝐼  ∈  ℕ | 
						
							| 17 |  | nnge1 | ⊢ ( 𝐼  ∈  ℕ  →  1  ≤  𝐼 ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ 1  ≤  𝐼 | 
						
							| 19 | 18 8 | pm3.2i | ⊢ ( 1  ≤  𝐼  ∧  𝐼  ≤  𝑁 ) | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( 1  ≤  𝐼  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 21 |  | nnz | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℤ ) | 
						
							| 22 | 16 21 | ax-mp | ⊢ 𝐼  ∈  ℤ | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 24 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 26 | 2 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 27 |  | elfz | ⊢ ( ( 𝐼  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐼  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝐼  ∧  𝐼  ≤  𝑁 ) ) ) | 
						
							| 28 | 23 25 26 27 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝐼  ∧  𝐼  ≤  𝑁 ) ) ) | 
						
							| 29 | 20 28 | mpbird | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 30 |  | nn0p1nn | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝐿  +  1 )  ∈  ℕ ) | 
						
							| 31 | 7 30 | ax-mp | ⊢ ( 𝐿  +  1 )  ∈  ℕ | 
						
							| 32 | 11 31 | eqeltrri | ⊢ 𝐽  ∈  ℕ | 
						
							| 33 |  | nnge1 | ⊢ ( 𝐽  ∈  ℕ  →  1  ≤  𝐽 ) | 
						
							| 34 | 32 33 | ax-mp | ⊢ 1  ≤  𝐽 | 
						
							| 35 | 34 9 | pm3.2i | ⊢ ( 1  ≤  𝐽  ∧  𝐽  ≤  𝑁 ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ( 1  ≤  𝐽  ∧  𝐽  ≤  𝑁 ) ) | 
						
							| 37 |  | nnz | ⊢ ( 𝐽  ∈  ℕ  →  𝐽  ∈  ℤ ) | 
						
							| 38 | 32 37 | ax-mp | ⊢ 𝐽  ∈  ℤ | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 40 |  | elfz | ⊢ ( ( 𝐽  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐽  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝐽  ∧  𝐽  ≤  𝑁 ) ) ) | 
						
							| 41 | 39 25 26 40 | syl3anc | ⊢ ( 𝜑  →  ( 𝐽  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  𝐽  ∧  𝐽  ≤  𝑁 ) ) ) | 
						
							| 42 | 36 41 | mpbird | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 43 | 1 2 3 4 5 29 42 | lmatfval | ⊢ ( 𝜑  →  ( 𝐼 𝑀 𝐽 )  =  ( ( 𝑊 ‘ ( 𝐼  −  1 ) ) ‘ ( 𝐽  −  1 ) ) ) | 
						
							| 44 | 6 | nn0cni | ⊢ 𝐾  ∈  ℂ | 
						
							| 45 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 46 | 44 45 | pncan3oi | ⊢ ( ( 𝐾  +  1 )  −  1 )  =  𝐾 | 
						
							| 47 | 10 | oveq1i | ⊢ ( ( 𝐾  +  1 )  −  1 )  =  ( 𝐼  −  1 ) | 
						
							| 48 | 46 47 | eqtr3i | ⊢ 𝐾  =  ( 𝐼  −  1 ) | 
						
							| 49 | 48 | fveq2i | ⊢ ( 𝑊 ‘ 𝐾 )  =  ( 𝑊 ‘ ( 𝐼  −  1 ) ) | 
						
							| 50 | 49 12 | eqtr3i | ⊢ ( 𝑊 ‘ ( 𝐼  −  1 ) )  =  𝑋 | 
						
							| 51 | 50 | a1i | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( 𝐼  −  1 ) )  =  𝑋 ) | 
						
							| 52 | 51 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑊 ‘ ( 𝐼  −  1 ) ) ‘ ( 𝐽  −  1 ) )  =  ( 𝑋 ‘ ( 𝐽  −  1 ) ) ) | 
						
							| 53 | 7 | nn0cni | ⊢ 𝐿  ∈  ℂ | 
						
							| 54 | 53 45 | pncan3oi | ⊢ ( ( 𝐿  +  1 )  −  1 )  =  𝐿 | 
						
							| 55 | 11 | oveq1i | ⊢ ( ( 𝐿  +  1 )  −  1 )  =  ( 𝐽  −  1 ) | 
						
							| 56 | 54 55 | eqtr3i | ⊢ 𝐿  =  ( 𝐽  −  1 ) | 
						
							| 57 | 56 | a1i | ⊢ ( 𝜑  →  𝐿  =  ( 𝐽  −  1 ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( 𝜑  →  ( 𝑋 ‘ 𝐿 )  =  ( 𝑋 ‘ ( 𝐽  −  1 ) ) ) | 
						
							| 59 | 58 13 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑋 ‘ ( 𝐽  −  1 ) )  =  𝑌 ) | 
						
							| 60 | 43 52 59 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐼 𝑀 𝐽 )  =  𝑌 ) |