Step |
Hyp |
Ref |
Expression |
1 |
|
lmatfval.m |
⊢ 𝑀 = ( litMat ‘ 𝑊 ) |
2 |
|
lmatfval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
lmatfval.w |
⊢ ( 𝜑 → 𝑊 ∈ Word Word 𝑉 ) |
4 |
|
lmatfval.1 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝑁 ) |
5 |
|
lmatfval.2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) ) = 𝑁 ) |
6 |
|
lmatfvlem.1 |
⊢ 𝐾 ∈ ℕ0 |
7 |
|
lmatfvlem.2 |
⊢ 𝐿 ∈ ℕ0 |
8 |
|
lmatfvlem.3 |
⊢ 𝐼 ≤ 𝑁 |
9 |
|
lmatfvlem.4 |
⊢ 𝐽 ≤ 𝑁 |
10 |
|
lmatfvlem.5 |
⊢ ( 𝐾 + 1 ) = 𝐼 |
11 |
|
lmatfvlem.6 |
⊢ ( 𝐿 + 1 ) = 𝐽 |
12 |
|
lmatfvlem.7 |
⊢ ( 𝑊 ‘ 𝐾 ) = 𝑋 |
13 |
|
lmatfvlem.8 |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐿 ) = 𝑌 ) |
14 |
|
nn0p1nn |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ ) |
15 |
6 14
|
ax-mp |
⊢ ( 𝐾 + 1 ) ∈ ℕ |
16 |
10 15
|
eqeltrri |
⊢ 𝐼 ∈ ℕ |
17 |
|
nnge1 |
⊢ ( 𝐼 ∈ ℕ → 1 ≤ 𝐼 ) |
18 |
16 17
|
ax-mp |
⊢ 1 ≤ 𝐼 |
19 |
18 8
|
pm3.2i |
⊢ ( 1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( 1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) ) |
21 |
|
nnz |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℤ ) |
22 |
16 21
|
ax-mp |
⊢ 𝐼 ∈ ℤ |
23 |
22
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
24 |
|
1z |
⊢ 1 ∈ ℤ |
25 |
24
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
26 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
27 |
|
elfz |
⊢ ( ( 𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐼 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) ) ) |
28 |
23 25 26 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) ) ) |
29 |
20 28
|
mpbird |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
30 |
|
nn0p1nn |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 + 1 ) ∈ ℕ ) |
31 |
7 30
|
ax-mp |
⊢ ( 𝐿 + 1 ) ∈ ℕ |
32 |
11 31
|
eqeltrri |
⊢ 𝐽 ∈ ℕ |
33 |
|
nnge1 |
⊢ ( 𝐽 ∈ ℕ → 1 ≤ 𝐽 ) |
34 |
32 33
|
ax-mp |
⊢ 1 ≤ 𝐽 |
35 |
34 9
|
pm3.2i |
⊢ ( 1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁 ) |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( 1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁 ) ) |
37 |
|
nnz |
⊢ ( 𝐽 ∈ ℕ → 𝐽 ∈ ℤ ) |
38 |
32 37
|
ax-mp |
⊢ 𝐽 ∈ ℤ |
39 |
38
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
40 |
|
elfz |
⊢ ( ( 𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐽 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁 ) ) ) |
41 |
39 25 26 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝐽 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁 ) ) ) |
42 |
36 41
|
mpbird |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
43 |
1 2 3 4 5 29 42
|
lmatfval |
⊢ ( 𝜑 → ( 𝐼 𝑀 𝐽 ) = ( ( 𝑊 ‘ ( 𝐼 − 1 ) ) ‘ ( 𝐽 − 1 ) ) ) |
44 |
6
|
nn0cni |
⊢ 𝐾 ∈ ℂ |
45 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
46 |
44 45
|
pncan3oi |
⊢ ( ( 𝐾 + 1 ) − 1 ) = 𝐾 |
47 |
10
|
oveq1i |
⊢ ( ( 𝐾 + 1 ) − 1 ) = ( 𝐼 − 1 ) |
48 |
46 47
|
eqtr3i |
⊢ 𝐾 = ( 𝐼 − 1 ) |
49 |
48
|
fveq2i |
⊢ ( 𝑊 ‘ 𝐾 ) = ( 𝑊 ‘ ( 𝐼 − 1 ) ) |
50 |
49 12
|
eqtr3i |
⊢ ( 𝑊 ‘ ( 𝐼 − 1 ) ) = 𝑋 |
51 |
50
|
a1i |
⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐼 − 1 ) ) = 𝑋 ) |
52 |
51
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑊 ‘ ( 𝐼 − 1 ) ) ‘ ( 𝐽 − 1 ) ) = ( 𝑋 ‘ ( 𝐽 − 1 ) ) ) |
53 |
7
|
nn0cni |
⊢ 𝐿 ∈ ℂ |
54 |
53 45
|
pncan3oi |
⊢ ( ( 𝐿 + 1 ) − 1 ) = 𝐿 |
55 |
11
|
oveq1i |
⊢ ( ( 𝐿 + 1 ) − 1 ) = ( 𝐽 − 1 ) |
56 |
54 55
|
eqtr3i |
⊢ 𝐿 = ( 𝐽 − 1 ) |
57 |
56
|
a1i |
⊢ ( 𝜑 → 𝐿 = ( 𝐽 − 1 ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐿 ) = ( 𝑋 ‘ ( 𝐽 − 1 ) ) ) |
59 |
58 13
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 𝐽 − 1 ) ) = 𝑌 ) |
60 |
43 52 59
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐼 𝑀 𝐽 ) = 𝑌 ) |