| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmatfval.m | ⊢ 𝑀  =  ( litMat ‘ 𝑊 ) | 
						
							| 2 |  | lmatfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | lmatfval.w | ⊢ ( 𝜑  →  𝑊  ∈  Word  Word  𝑉 ) | 
						
							| 4 |  | lmatfval.1 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  𝑁 ) | 
						
							| 5 |  | lmatfval.2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑁 ) )  →  ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁 ) | 
						
							| 6 |  | lmatcl.b | ⊢ 𝑉  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | lmatcl.1 | ⊢ 𝑂  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 8 |  | lmatcl.2 | ⊢ 𝑃  =  ( Base ‘ 𝑂 ) | 
						
							| 9 |  | lmatcl.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑋 ) | 
						
							| 10 |  | lmatval | ⊢ ( 𝑊  ∈  Word  Word  𝑉  →  ( litMat ‘ 𝑊 )  =  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑊 ‘ 0 ) ) )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  ( litMat ‘ 𝑊 )  =  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑊 ‘ 0 ) ) )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 12 | 1 11 | eqtrid | ⊢ ( 𝜑  →  𝑀  =  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑊 ‘ 0 ) ) )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 13 | 4 | oveq2d | ⊢ ( 𝜑  →  ( 1 ... ( ♯ ‘ 𝑊 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 14 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑁 )  ↔  𝑁  ∈  ℕ ) | 
						
							| 15 | 2 14 | sylibr | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 16 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  𝑖  =  0 ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( 𝑖  ∈  ( 0 ..^ 𝑁 )  ↔  0  ∈  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 20 | 18 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 21 | 20 | fveqeq2d | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁  ↔  ( ♯ ‘ ( 𝑊 ‘ 0 ) )  =  𝑁 ) ) | 
						
							| 22 | 19 21 | imbi12d | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( ( 𝑖  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁 )  ↔  ( 0  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ 0 ) )  =  𝑁 ) ) ) | 
						
							| 23 | 5 | ex | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁 ) ) | 
						
							| 24 | 17 22 23 | vtocld | ⊢ ( 𝜑  →  ( 0  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ 0 ) )  =  𝑁 ) ) | 
						
							| 25 | 15 24 | mpd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊 ‘ 0 ) )  =  𝑁 ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝜑  →  ( 1 ... ( ♯ ‘ ( 𝑊 ‘ 0 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 27 |  | eqidd | ⊢ ( 𝜑  →  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) )  =  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 28 | 13 26 27 | mpoeq123dv | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑗  ∈  ( 1 ... ( ♯ ‘ ( 𝑊 ‘ 0 ) ) )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) )  =  ( 𝑘  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 29 | 12 28 | eqtrd | ⊢ ( 𝜑  →  𝑀  =  ( 𝑘  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 30 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 31 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑊  ∈  Word  Word  𝑉 ) | 
						
							| 32 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑘  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 33 |  | fz1fzo0m1 | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  ( 𝑘  −  1 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 35 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ♯ ‘ 𝑊 )  =  𝑁 ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 37 | 34 36 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 38 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  Word  𝑉  ∧  ( 𝑘  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ ( 𝑘  −  1 ) )  ∈  Word  𝑉 ) | 
						
							| 39 | 31 37 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑊 ‘ ( 𝑘  −  1 ) )  ∈  Word  𝑉 ) | 
						
							| 40 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 41 |  | fz1fzo0m1 | ⊢ ( 𝑗  ∈  ( 1 ... 𝑁 )  →  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 43 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑘  −  1 )  ∈  V ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  =  ( 𝑘  −  1 ) )  →  𝑖  =  ( 𝑘  −  1 ) ) | 
						
							| 45 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑖  =  ( 𝑘  −  1 ) )  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 46 | 44 45 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑖  =  ( 𝑘  −  1 ) )  →  ( 𝑖  ∈  ( 0 ..^ 𝑁 )  ↔  ( 𝑘  −  1 )  ∈  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 47 | 44 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  =  ( 𝑘  −  1 ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( 𝑘  −  1 ) ) ) | 
						
							| 48 | 47 | fveqeq2d | ⊢ ( ( 𝜑  ∧  𝑖  =  ( 𝑘  −  1 ) )  →  ( ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁  ↔  ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) )  =  𝑁 ) ) | 
						
							| 49 | 46 48 | imbi12d | ⊢ ( ( 𝜑  ∧  𝑖  =  ( 𝑘  −  1 ) )  →  ( ( 𝑖  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ 𝑖 ) )  =  𝑁 )  ↔  ( ( 𝑘  −  1 )  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) )  =  𝑁 ) ) ) | 
						
							| 50 | 43 49 23 | vtocld | ⊢ ( 𝜑  →  ( ( 𝑘  −  1 )  ∈  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) )  =  𝑁 ) ) | 
						
							| 51 | 50 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑘  −  1 )  ∈  ( 0 ..^ 𝑁 ) )  →  ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) )  =  𝑁 ) | 
						
							| 52 | 33 51 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) )  =  𝑁 ) | 
						
							| 53 | 52 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) )  =  𝑁 ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 0 ..^ ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 55 | 42 54 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) ) ) ) | 
						
							| 56 |  | wrdsymbcl | ⊢ ( ( ( 𝑊 ‘ ( 𝑘  −  1 ) )  ∈  Word  𝑉  ∧  ( 𝑗  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊 ‘ ( 𝑘  −  1 ) ) ) ) )  →  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) )  ∈  𝑉 ) | 
						
							| 57 | 39 55 56 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) )  ∈  𝑉 ) | 
						
							| 58 | 7 6 8 30 9 57 | matbas2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑊 ‘ ( 𝑘  −  1 ) ) ‘ ( 𝑗  −  1 ) ) )  ∈  𝑃 ) | 
						
							| 59 | 29 58 | eqeltrd | ⊢ ( 𝜑  →  𝑀  ∈  𝑃 ) |