| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmatfval.m |  |-  M = ( litMat ` W ) | 
						
							| 2 |  | lmatfval.n |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | lmatfval.w |  |-  ( ph -> W e. Word Word V ) | 
						
							| 4 |  | lmatfval.1 |  |-  ( ph -> ( # ` W ) = N ) | 
						
							| 5 |  | lmatfval.2 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( # ` ( W ` i ) ) = N ) | 
						
							| 6 |  | lmatcl.b |  |-  V = ( Base ` R ) | 
						
							| 7 |  | lmatcl.1 |  |-  O = ( ( 1 ... N ) Mat R ) | 
						
							| 8 |  | lmatcl.2 |  |-  P = ( Base ` O ) | 
						
							| 9 |  | lmatcl.r |  |-  ( ph -> R e. X ) | 
						
							| 10 |  | lmatval |  |-  ( W e. Word Word V -> ( litMat ` W ) = ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> ( litMat ` W ) = ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 12 | 1 11 | eqtrid |  |-  ( ph -> M = ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 13 | 4 | oveq2d |  |-  ( ph -> ( 1 ... ( # ` W ) ) = ( 1 ... N ) ) | 
						
							| 14 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ N ) <-> N e. NN ) | 
						
							| 15 | 2 14 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ N ) ) | 
						
							| 16 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 17 | 16 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ i = 0 ) -> i = 0 ) | 
						
							| 19 | 18 | eleq1d |  |-  ( ( ph /\ i = 0 ) -> ( i e. ( 0 ..^ N ) <-> 0 e. ( 0 ..^ N ) ) ) | 
						
							| 20 | 18 | fveq2d |  |-  ( ( ph /\ i = 0 ) -> ( W ` i ) = ( W ` 0 ) ) | 
						
							| 21 | 20 | fveqeq2d |  |-  ( ( ph /\ i = 0 ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` 0 ) ) = N ) ) | 
						
							| 22 | 19 21 | imbi12d |  |-  ( ( ph /\ i = 0 ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) ) | 
						
							| 23 | 5 | ex |  |-  ( ph -> ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) ) | 
						
							| 24 | 17 22 23 | vtocld |  |-  ( ph -> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) | 
						
							| 25 | 15 24 | mpd |  |-  ( ph -> ( # ` ( W ` 0 ) ) = N ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ph -> ( 1 ... ( # ` ( W ` 0 ) ) ) = ( 1 ... N ) ) | 
						
							| 27 |  | eqidd |  |-  ( ph -> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) = ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) | 
						
							| 28 | 13 26 27 | mpoeq123dv |  |-  ( ph -> ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) = ( k e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 29 | 12 28 | eqtrd |  |-  ( ph -> M = ( k e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) | 
						
							| 30 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 31 | 3 | 3ad2ant1 |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> W e. Word Word V ) | 
						
							| 32 |  | simp2 |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> k e. ( 1 ... N ) ) | 
						
							| 33 |  | fz1fzo0m1 |  |-  ( k e. ( 1 ... N ) -> ( k - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( k - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 35 | 4 | 3ad2ant1 |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( # ` W ) = N ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) | 
						
							| 37 | 34 36 | eleqtrrd |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( k - 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 38 |  | wrdsymbcl |  |-  ( ( W e. Word Word V /\ ( k - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( k - 1 ) ) e. Word V ) | 
						
							| 39 | 31 37 38 | syl2anc |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( W ` ( k - 1 ) ) e. Word V ) | 
						
							| 40 |  | simp3 |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) | 
						
							| 41 |  | fz1fzo0m1 |  |-  ( j e. ( 1 ... N ) -> ( j - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( j - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 43 |  | ovexd |  |-  ( ph -> ( k - 1 ) e. _V ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ i = ( k - 1 ) ) -> i = ( k - 1 ) ) | 
						
							| 45 |  | eqidd |  |-  ( ( ph /\ i = ( k - 1 ) ) -> ( 0 ..^ N ) = ( 0 ..^ N ) ) | 
						
							| 46 | 44 45 | eleq12d |  |-  ( ( ph /\ i = ( k - 1 ) ) -> ( i e. ( 0 ..^ N ) <-> ( k - 1 ) e. ( 0 ..^ N ) ) ) | 
						
							| 47 | 44 | fveq2d |  |-  ( ( ph /\ i = ( k - 1 ) ) -> ( W ` i ) = ( W ` ( k - 1 ) ) ) | 
						
							| 48 | 47 | fveqeq2d |  |-  ( ( ph /\ i = ( k - 1 ) ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` ( k - 1 ) ) ) = N ) ) | 
						
							| 49 | 46 48 | imbi12d |  |-  ( ( ph /\ i = ( k - 1 ) ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( ( k - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) ) ) | 
						
							| 50 | 43 49 23 | vtocld |  |-  ( ph -> ( ( k - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( ph /\ ( k - 1 ) e. ( 0 ..^ N ) ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) | 
						
							| 52 | 33 51 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... N ) ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) | 
						
							| 53 | 52 | 3adant3 |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( 0 ..^ ( # ` ( W ` ( k - 1 ) ) ) ) = ( 0 ..^ N ) ) | 
						
							| 55 | 42 54 | eleqtrrd |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( j - 1 ) e. ( 0 ..^ ( # ` ( W ` ( k - 1 ) ) ) ) ) | 
						
							| 56 |  | wrdsymbcl |  |-  ( ( ( W ` ( k - 1 ) ) e. Word V /\ ( j - 1 ) e. ( 0 ..^ ( # ` ( W ` ( k - 1 ) ) ) ) ) -> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) e. V ) | 
						
							| 57 | 39 55 56 | syl2anc |  |-  ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) e. V ) | 
						
							| 58 | 7 6 8 30 9 57 | matbas2d |  |-  ( ph -> ( k e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) e. P ) | 
						
							| 59 | 29 58 | eqeltrd |  |-  ( ph -> M e. P ) |