| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmatfval.m |
|- M = ( litMat ` W ) |
| 2 |
|
lmatfval.n |
|- ( ph -> N e. NN ) |
| 3 |
|
lmatfval.w |
|- ( ph -> W e. Word Word V ) |
| 4 |
|
lmatfval.1 |
|- ( ph -> ( # ` W ) = N ) |
| 5 |
|
lmatfval.2 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( # ` ( W ` i ) ) = N ) |
| 6 |
|
lmatcl.b |
|- V = ( Base ` R ) |
| 7 |
|
lmatcl.1 |
|- O = ( ( 1 ... N ) Mat R ) |
| 8 |
|
lmatcl.2 |
|- P = ( Base ` O ) |
| 9 |
|
lmatcl.r |
|- ( ph -> R e. X ) |
| 10 |
|
lmatval |
|- ( W e. Word Word V -> ( litMat ` W ) = ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( litMat ` W ) = ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) |
| 12 |
1 11
|
eqtrid |
|- ( ph -> M = ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) |
| 13 |
4
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` W ) ) = ( 1 ... N ) ) |
| 14 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
| 15 |
2 14
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ N ) ) |
| 16 |
|
0nn0 |
|- 0 e. NN0 |
| 17 |
16
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 18 |
|
simpr |
|- ( ( ph /\ i = 0 ) -> i = 0 ) |
| 19 |
18
|
eleq1d |
|- ( ( ph /\ i = 0 ) -> ( i e. ( 0 ..^ N ) <-> 0 e. ( 0 ..^ N ) ) ) |
| 20 |
18
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( W ` i ) = ( W ` 0 ) ) |
| 21 |
20
|
fveqeq2d |
|- ( ( ph /\ i = 0 ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` 0 ) ) = N ) ) |
| 22 |
19 21
|
imbi12d |
|- ( ( ph /\ i = 0 ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) ) |
| 23 |
5
|
ex |
|- ( ph -> ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) ) |
| 24 |
17 22 23
|
vtocld |
|- ( ph -> ( 0 e. ( 0 ..^ N ) -> ( # ` ( W ` 0 ) ) = N ) ) |
| 25 |
15 24
|
mpd |
|- ( ph -> ( # ` ( W ` 0 ) ) = N ) |
| 26 |
25
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` ( W ` 0 ) ) ) = ( 1 ... N ) ) |
| 27 |
|
eqidd |
|- ( ph -> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) = ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) |
| 28 |
13 26 27
|
mpoeq123dv |
|- ( ph -> ( k e. ( 1 ... ( # ` W ) ) , j e. ( 1 ... ( # ` ( W ` 0 ) ) ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) = ( k e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) |
| 29 |
12 28
|
eqtrd |
|- ( ph -> M = ( k e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) ) |
| 30 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 31 |
3
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> W e. Word Word V ) |
| 32 |
|
simp2 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> k e. ( 1 ... N ) ) |
| 33 |
|
fz1fzo0m1 |
|- ( k e. ( 1 ... N ) -> ( k - 1 ) e. ( 0 ..^ N ) ) |
| 34 |
32 33
|
syl |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( k - 1 ) e. ( 0 ..^ N ) ) |
| 35 |
4
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( # ` W ) = N ) |
| 36 |
35
|
oveq2d |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) |
| 37 |
34 36
|
eleqtrrd |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( k - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 38 |
|
wrdsymbcl |
|- ( ( W e. Word Word V /\ ( k - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( k - 1 ) ) e. Word V ) |
| 39 |
31 37 38
|
syl2anc |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( W ` ( k - 1 ) ) e. Word V ) |
| 40 |
|
simp3 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) |
| 41 |
|
fz1fzo0m1 |
|- ( j e. ( 1 ... N ) -> ( j - 1 ) e. ( 0 ..^ N ) ) |
| 42 |
40 41
|
syl |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( j - 1 ) e. ( 0 ..^ N ) ) |
| 43 |
|
ovexd |
|- ( ph -> ( k - 1 ) e. _V ) |
| 44 |
|
simpr |
|- ( ( ph /\ i = ( k - 1 ) ) -> i = ( k - 1 ) ) |
| 45 |
|
eqidd |
|- ( ( ph /\ i = ( k - 1 ) ) -> ( 0 ..^ N ) = ( 0 ..^ N ) ) |
| 46 |
44 45
|
eleq12d |
|- ( ( ph /\ i = ( k - 1 ) ) -> ( i e. ( 0 ..^ N ) <-> ( k - 1 ) e. ( 0 ..^ N ) ) ) |
| 47 |
44
|
fveq2d |
|- ( ( ph /\ i = ( k - 1 ) ) -> ( W ` i ) = ( W ` ( k - 1 ) ) ) |
| 48 |
47
|
fveqeq2d |
|- ( ( ph /\ i = ( k - 1 ) ) -> ( ( # ` ( W ` i ) ) = N <-> ( # ` ( W ` ( k - 1 ) ) ) = N ) ) |
| 49 |
46 48
|
imbi12d |
|- ( ( ph /\ i = ( k - 1 ) ) -> ( ( i e. ( 0 ..^ N ) -> ( # ` ( W ` i ) ) = N ) <-> ( ( k - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) ) ) |
| 50 |
43 49 23
|
vtocld |
|- ( ph -> ( ( k - 1 ) e. ( 0 ..^ N ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) ) |
| 51 |
50
|
imp |
|- ( ( ph /\ ( k - 1 ) e. ( 0 ..^ N ) ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) |
| 52 |
33 51
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) |
| 53 |
52
|
3adant3 |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( # ` ( W ` ( k - 1 ) ) ) = N ) |
| 54 |
53
|
oveq2d |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( 0 ..^ ( # ` ( W ` ( k - 1 ) ) ) ) = ( 0 ..^ N ) ) |
| 55 |
42 54
|
eleqtrrd |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( j - 1 ) e. ( 0 ..^ ( # ` ( W ` ( k - 1 ) ) ) ) ) |
| 56 |
|
wrdsymbcl |
|- ( ( ( W ` ( k - 1 ) ) e. Word V /\ ( j - 1 ) e. ( 0 ..^ ( # ` ( W ` ( k - 1 ) ) ) ) ) -> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) e. V ) |
| 57 |
39 55 56
|
syl2anc |
|- ( ( ph /\ k e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) -> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) e. V ) |
| 58 |
7 6 8 30 9 57
|
matbas2d |
|- ( ph -> ( k e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( W ` ( k - 1 ) ) ` ( j - 1 ) ) ) e. P ) |
| 59 |
29 58
|
eqeltrd |
|- ( ph -> M e. P ) |