| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmatfval.m |  | 
						
							| 2 |  | lmatfval.n |  | 
						
							| 3 |  | lmatfval.w |  | 
						
							| 4 |  | lmatfval.1 |  | 
						
							| 5 |  | lmatfval.2 |  | 
						
							| 6 |  | lmatcl.b |  | 
						
							| 7 |  | lmatcl.1 |  | 
						
							| 8 |  | lmatcl.2 |  | 
						
							| 9 |  | lmatcl.r |  | 
						
							| 10 |  | lmatval |  | 
						
							| 11 | 3 10 | syl |  | 
						
							| 12 | 1 11 | eqtrid |  | 
						
							| 13 | 4 | oveq2d |  | 
						
							| 14 |  | lbfzo0 |  | 
						
							| 15 | 2 14 | sylibr |  | 
						
							| 16 |  | 0nn0 |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 18 | eleq1d |  | 
						
							| 20 | 18 | fveq2d |  | 
						
							| 21 | 20 | fveqeq2d |  | 
						
							| 22 | 19 21 | imbi12d |  | 
						
							| 23 | 5 | ex |  | 
						
							| 24 | 17 22 23 | vtocld |  | 
						
							| 25 | 15 24 | mpd |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 | 13 26 27 | mpoeq123dv |  | 
						
							| 29 | 12 28 | eqtrd |  | 
						
							| 30 |  | fzfid |  | 
						
							| 31 | 3 | 3ad2ant1 |  | 
						
							| 32 |  | simp2 |  | 
						
							| 33 |  | fz1fzo0m1 |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 | 4 | 3ad2ant1 |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 34 36 | eleqtrrd |  | 
						
							| 38 |  | wrdsymbcl |  | 
						
							| 39 | 31 37 38 | syl2anc |  | 
						
							| 40 |  | simp3 |  | 
						
							| 41 |  | fz1fzo0m1 |  | 
						
							| 42 | 40 41 | syl |  | 
						
							| 43 |  | ovexd |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 |  | eqidd |  | 
						
							| 46 | 44 45 | eleq12d |  | 
						
							| 47 | 44 | fveq2d |  | 
						
							| 48 | 47 | fveqeq2d |  | 
						
							| 49 | 46 48 | imbi12d |  | 
						
							| 50 | 43 49 23 | vtocld |  | 
						
							| 51 | 50 | imp |  | 
						
							| 52 | 33 51 | sylan2 |  | 
						
							| 53 | 52 | 3adant3 |  | 
						
							| 54 | 53 | oveq2d |  | 
						
							| 55 | 42 54 | eleqtrrd |  | 
						
							| 56 |  | wrdsymbcl |  | 
						
							| 57 | 39 55 56 | syl2anc |  | 
						
							| 58 | 7 6 8 30 9 57 | matbas2d |  | 
						
							| 59 | 29 58 | eqeltrd |  |