Metamath Proof Explorer


Theorem lmatcl

Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020)

Ref Expression
Hypotheses lmatfval.m M = litMat W
lmatfval.n φ N
lmatfval.w φ W Word Word V
lmatfval.1 φ W = N
lmatfval.2 φ i 0 ..^ N W i = N
lmatcl.b V = Base R
lmatcl.1 O = 1 N Mat R
lmatcl.2 P = Base O
lmatcl.r φ R X
Assertion lmatcl φ M P

Proof

Step Hyp Ref Expression
1 lmatfval.m M = litMat W
2 lmatfval.n φ N
3 lmatfval.w φ W Word Word V
4 lmatfval.1 φ W = N
5 lmatfval.2 φ i 0 ..^ N W i = N
6 lmatcl.b V = Base R
7 lmatcl.1 O = 1 N Mat R
8 lmatcl.2 P = Base O
9 lmatcl.r φ R X
10 lmatval W Word Word V litMat W = k 1 W , j 1 W 0 W k 1 j 1
11 3 10 syl φ litMat W = k 1 W , j 1 W 0 W k 1 j 1
12 1 11 syl5eq φ M = k 1 W , j 1 W 0 W k 1 j 1
13 4 oveq2d φ 1 W = 1 N
14 lbfzo0 0 0 ..^ N N
15 2 14 sylibr φ 0 0 ..^ N
16 0nn0 0 0
17 16 a1i φ 0 0
18 simpr φ i = 0 i = 0
19 18 eleq1d φ i = 0 i 0 ..^ N 0 0 ..^ N
20 18 fveq2d φ i = 0 W i = W 0
21 20 fveqeq2d φ i = 0 W i = N W 0 = N
22 19 21 imbi12d φ i = 0 i 0 ..^ N W i = N 0 0 ..^ N W 0 = N
23 5 ex φ i 0 ..^ N W i = N
24 17 22 23 vtocld φ 0 0 ..^ N W 0 = N
25 15 24 mpd φ W 0 = N
26 25 oveq2d φ 1 W 0 = 1 N
27 eqidd φ W k 1 j 1 = W k 1 j 1
28 13 26 27 mpoeq123dv φ k 1 W , j 1 W 0 W k 1 j 1 = k 1 N , j 1 N W k 1 j 1
29 12 28 eqtrd φ M = k 1 N , j 1 N W k 1 j 1
30 fzfid φ 1 N Fin
31 3 3ad2ant1 φ k 1 N j 1 N W Word Word V
32 simp2 φ k 1 N j 1 N k 1 N
33 fz1fzo0m1 k 1 N k 1 0 ..^ N
34 32 33 syl φ k 1 N j 1 N k 1 0 ..^ N
35 4 3ad2ant1 φ k 1 N j 1 N W = N
36 35 oveq2d φ k 1 N j 1 N 0 ..^ W = 0 ..^ N
37 34 36 eleqtrrd φ k 1 N j 1 N k 1 0 ..^ W
38 wrdsymbcl W Word Word V k 1 0 ..^ W W k 1 Word V
39 31 37 38 syl2anc φ k 1 N j 1 N W k 1 Word V
40 simp3 φ k 1 N j 1 N j 1 N
41 fz1fzo0m1 j 1 N j 1 0 ..^ N
42 40 41 syl φ k 1 N j 1 N j 1 0 ..^ N
43 ovexd φ k 1 V
44 simpr φ i = k 1 i = k 1
45 eqidd φ i = k 1 0 ..^ N = 0 ..^ N
46 44 45 eleq12d φ i = k 1 i 0 ..^ N k 1 0 ..^ N
47 44 fveq2d φ i = k 1 W i = W k 1
48 47 fveqeq2d φ i = k 1 W i = N W k 1 = N
49 46 48 imbi12d φ i = k 1 i 0 ..^ N W i = N k 1 0 ..^ N W k 1 = N
50 43 49 23 vtocld φ k 1 0 ..^ N W k 1 = N
51 50 imp φ k 1 0 ..^ N W k 1 = N
52 33 51 sylan2 φ k 1 N W k 1 = N
53 52 3adant3 φ k 1 N j 1 N W k 1 = N
54 53 oveq2d φ k 1 N j 1 N 0 ..^ W k 1 = 0 ..^ N
55 42 54 eleqtrrd φ k 1 N j 1 N j 1 0 ..^ W k 1
56 wrdsymbcl W k 1 Word V j 1 0 ..^ W k 1 W k 1 j 1 V
57 39 55 56 syl2anc φ k 1 N j 1 N W k 1 j 1 V
58 7 6 8 30 9 57 matbas2d φ k 1 N , j 1 N W k 1 j 1 P
59 29 58 eqeltrd φ M P