Step |
Hyp |
Ref |
Expression |
1 |
|
lmatfval.m |
|
2 |
|
lmatfval.n |
|
3 |
|
lmatfval.w |
|
4 |
|
lmatfval.1 |
|
5 |
|
lmatfval.2 |
|
6 |
|
lmatcl.b |
|
7 |
|
lmatcl.1 |
|
8 |
|
lmatcl.2 |
|
9 |
|
lmatcl.r |
|
10 |
|
lmatval |
|
11 |
3 10
|
syl |
|
12 |
1 11
|
eqtrid |
|
13 |
4
|
oveq2d |
|
14 |
|
lbfzo0 |
|
15 |
2 14
|
sylibr |
|
16 |
|
0nn0 |
|
17 |
16
|
a1i |
|
18 |
|
simpr |
|
19 |
18
|
eleq1d |
|
20 |
18
|
fveq2d |
|
21 |
20
|
fveqeq2d |
|
22 |
19 21
|
imbi12d |
|
23 |
5
|
ex |
|
24 |
17 22 23
|
vtocld |
|
25 |
15 24
|
mpd |
|
26 |
25
|
oveq2d |
|
27 |
|
eqidd |
|
28 |
13 26 27
|
mpoeq123dv |
|
29 |
12 28
|
eqtrd |
|
30 |
|
fzfid |
|
31 |
3
|
3ad2ant1 |
|
32 |
|
simp2 |
|
33 |
|
fz1fzo0m1 |
|
34 |
32 33
|
syl |
|
35 |
4
|
3ad2ant1 |
|
36 |
35
|
oveq2d |
|
37 |
34 36
|
eleqtrrd |
|
38 |
|
wrdsymbcl |
|
39 |
31 37 38
|
syl2anc |
|
40 |
|
simp3 |
|
41 |
|
fz1fzo0m1 |
|
42 |
40 41
|
syl |
|
43 |
|
ovexd |
|
44 |
|
simpr |
|
45 |
|
eqidd |
|
46 |
44 45
|
eleq12d |
|
47 |
44
|
fveq2d |
|
48 |
47
|
fveqeq2d |
|
49 |
46 48
|
imbi12d |
|
50 |
43 49 23
|
vtocld |
|
51 |
50
|
imp |
|
52 |
33 51
|
sylan2 |
|
53 |
52
|
3adant3 |
|
54 |
53
|
oveq2d |
|
55 |
42 54
|
eleqtrrd |
|
56 |
|
wrdsymbcl |
|
57 |
39 55 56
|
syl2anc |
|
58 |
7 6 8 30 9 57
|
matbas2d |
|
59 |
29 58
|
eqeltrd |
|