| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmat22.m |
|- M = ( litMat ` <" <" A B "> <" C D "> "> ) |
| 2 |
|
lmat22.a |
|- ( ph -> A e. V ) |
| 3 |
|
lmat22.b |
|- ( ph -> B e. V ) |
| 4 |
|
lmat22.c |
|- ( ph -> C e. V ) |
| 5 |
|
lmat22.d |
|- ( ph -> D e. V ) |
| 6 |
|
simpr |
|- ( ( ph /\ i = 0 ) -> i = 0 ) |
| 7 |
6
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( <" <" A B "> <" C D "> "> ` i ) = ( <" <" A B "> <" C D "> "> ` 0 ) ) |
| 8 |
2 3
|
s2cld |
|- ( ph -> <" A B "> e. Word V ) |
| 9 |
|
s2fv0 |
|- ( <" A B "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
| 12 |
7 11
|
eqtrd |
|- ( ( ph /\ i = 0 ) -> ( <" <" A B "> <" C D "> "> ` i ) = <" A B "> ) |
| 13 |
12
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = ( # ` <" A B "> ) ) |
| 14 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
| 15 |
13 14
|
eqtrdi |
|- ( ( ph /\ i = 0 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 16 |
15
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ 2 ) ) /\ i = 0 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 17 |
|
simpr |
|- ( ( ph /\ i = 1 ) -> i = 1 ) |
| 18 |
17
|
fveq2d |
|- ( ( ph /\ i = 1 ) -> ( <" <" A B "> <" C D "> "> ` i ) = ( <" <" A B "> <" C D "> "> ` 1 ) ) |
| 19 |
4 5
|
s2cld |
|- ( ph -> <" C D "> e. Word V ) |
| 20 |
|
s2fv1 |
|- ( <" C D "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
| 23 |
18 22
|
eqtrd |
|- ( ( ph /\ i = 1 ) -> ( <" <" A B "> <" C D "> "> ` i ) = <" C D "> ) |
| 24 |
23
|
fveq2d |
|- ( ( ph /\ i = 1 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = ( # ` <" C D "> ) ) |
| 25 |
|
s2len |
|- ( # ` <" C D "> ) = 2 |
| 26 |
24 25
|
eqtrdi |
|- ( ( ph /\ i = 1 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 27 |
26
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ 2 ) ) /\ i = 1 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 28 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
| 29 |
28
|
eleq2i |
|- ( i e. ( 0 ..^ 2 ) <-> i e. { 0 , 1 } ) |
| 30 |
|
vex |
|- i e. _V |
| 31 |
30
|
elpr |
|- ( i e. { 0 , 1 } <-> ( i = 0 \/ i = 1 ) ) |
| 32 |
29 31
|
bitri |
|- ( i e. ( 0 ..^ 2 ) <-> ( i = 0 \/ i = 1 ) ) |
| 33 |
32
|
biimpi |
|- ( i e. ( 0 ..^ 2 ) -> ( i = 0 \/ i = 1 ) ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( i = 0 \/ i = 1 ) ) |
| 35 |
16 27 34
|
mpjaodan |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |