Step |
Hyp |
Ref |
Expression |
1 |
|
lmat22.m |
|- M = ( litMat ` <" <" A B "> <" C D "> "> ) |
2 |
|
lmat22.a |
|- ( ph -> A e. V ) |
3 |
|
lmat22.b |
|- ( ph -> B e. V ) |
4 |
|
lmat22.c |
|- ( ph -> C e. V ) |
5 |
|
lmat22.d |
|- ( ph -> D e. V ) |
6 |
|
simpr |
|- ( ( ph /\ i = 0 ) -> i = 0 ) |
7 |
6
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( <" <" A B "> <" C D "> "> ` i ) = ( <" <" A B "> <" C D "> "> ` 0 ) ) |
8 |
2 3
|
s2cld |
|- ( ph -> <" A B "> e. Word V ) |
9 |
|
s2fv0 |
|- ( <" A B "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
10 |
8 9
|
syl |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
11 |
10
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
12 |
7 11
|
eqtrd |
|- ( ( ph /\ i = 0 ) -> ( <" <" A B "> <" C D "> "> ` i ) = <" A B "> ) |
13 |
12
|
fveq2d |
|- ( ( ph /\ i = 0 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = ( # ` <" A B "> ) ) |
14 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
15 |
13 14
|
eqtrdi |
|- ( ( ph /\ i = 0 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
16 |
15
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ 2 ) ) /\ i = 0 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
17 |
|
simpr |
|- ( ( ph /\ i = 1 ) -> i = 1 ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ i = 1 ) -> ( <" <" A B "> <" C D "> "> ` i ) = ( <" <" A B "> <" C D "> "> ` 1 ) ) |
19 |
4 5
|
s2cld |
|- ( ph -> <" C D "> e. Word V ) |
20 |
|
s2fv1 |
|- ( <" C D "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
21 |
19 20
|
syl |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
22 |
21
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
23 |
18 22
|
eqtrd |
|- ( ( ph /\ i = 1 ) -> ( <" <" A B "> <" C D "> "> ` i ) = <" C D "> ) |
24 |
23
|
fveq2d |
|- ( ( ph /\ i = 1 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = ( # ` <" C D "> ) ) |
25 |
|
s2len |
|- ( # ` <" C D "> ) = 2 |
26 |
24 25
|
eqtrdi |
|- ( ( ph /\ i = 1 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
27 |
26
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ 2 ) ) /\ i = 1 ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
28 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
29 |
28
|
eleq2i |
|- ( i e. ( 0 ..^ 2 ) <-> i e. { 0 , 1 } ) |
30 |
|
vex |
|- i e. _V |
31 |
30
|
elpr |
|- ( i e. { 0 , 1 } <-> ( i = 0 \/ i = 1 ) ) |
32 |
29 31
|
bitri |
|- ( i e. ( 0 ..^ 2 ) <-> ( i = 0 \/ i = 1 ) ) |
33 |
32
|
biimpi |
|- ( i e. ( 0 ..^ 2 ) -> ( i = 0 \/ i = 1 ) ) |
34 |
33
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( i = 0 \/ i = 1 ) ) |
35 |
16 27 34
|
mpjaodan |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |