Step |
Hyp |
Ref |
Expression |
1 |
|
lmat22.m |
|- M = ( litMat ` <" <" A B "> <" C D "> "> ) |
2 |
|
lmat22.a |
|- ( ph -> A e. V ) |
3 |
|
lmat22.b |
|- ( ph -> B e. V ) |
4 |
|
lmat22.c |
|- ( ph -> C e. V ) |
5 |
|
lmat22.d |
|- ( ph -> D e. V ) |
6 |
|
2nn |
|- 2 e. NN |
7 |
6
|
a1i |
|- ( ph -> 2 e. NN ) |
8 |
2 3
|
s2cld |
|- ( ph -> <" A B "> e. Word V ) |
9 |
4 5
|
s2cld |
|- ( ph -> <" C D "> e. Word V ) |
10 |
8 9
|
s2cld |
|- ( ph -> <" <" A B "> <" C D "> "> e. Word Word V ) |
11 |
|
s2len |
|- ( # ` <" <" A B "> <" C D "> "> ) = 2 |
12 |
11
|
a1i |
|- ( ph -> ( # ` <" <" A B "> <" C D "> "> ) = 2 ) |
13 |
1 2 3 4 5
|
lmat22lem |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
14 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
15 |
|
eluzfz1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... 2 ) ) |
16 |
14 15
|
ax-mp |
|- 1 e. ( 1 ... 2 ) |
17 |
16
|
a1i |
|- ( ph -> 1 e. ( 1 ... 2 ) ) |
18 |
1 7 10 12 13 17 17
|
lmatfval |
|- ( ph -> ( 1 M 1 ) = ( ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) ` ( 1 - 1 ) ) ) |
19 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
20 |
19
|
fveq2i |
|- ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) = ( <" <" A B "> <" C D "> "> ` 0 ) |
21 |
|
s2fv0 |
|- ( <" A B "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
22 |
8 21
|
syl |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
23 |
20 22
|
syl5eq |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) = <" A B "> ) |
24 |
19
|
a1i |
|- ( ph -> ( 1 - 1 ) = 0 ) |
25 |
23 24
|
fveq12d |
|- ( ph -> ( ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) ` ( 1 - 1 ) ) = ( <" A B "> ` 0 ) ) |
26 |
|
s2fv0 |
|- ( A e. V -> ( <" A B "> ` 0 ) = A ) |
27 |
2 26
|
syl |
|- ( ph -> ( <" A B "> ` 0 ) = A ) |
28 |
18 25 27
|
3eqtrd |
|- ( ph -> ( 1 M 1 ) = A ) |