| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmat22.m |
|- M = ( litMat ` <" <" A B "> <" C D "> "> ) |
| 2 |
|
lmat22.a |
|- ( ph -> A e. V ) |
| 3 |
|
lmat22.b |
|- ( ph -> B e. V ) |
| 4 |
|
lmat22.c |
|- ( ph -> C e. V ) |
| 5 |
|
lmat22.d |
|- ( ph -> D e. V ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
6
|
a1i |
|- ( ph -> 2 e. NN ) |
| 8 |
2 3
|
s2cld |
|- ( ph -> <" A B "> e. Word V ) |
| 9 |
4 5
|
s2cld |
|- ( ph -> <" C D "> e. Word V ) |
| 10 |
8 9
|
s2cld |
|- ( ph -> <" <" A B "> <" C D "> "> e. Word Word V ) |
| 11 |
|
s2len |
|- ( # ` <" <" A B "> <" C D "> "> ) = 2 |
| 12 |
11
|
a1i |
|- ( ph -> ( # ` <" <" A B "> <" C D "> "> ) = 2 ) |
| 13 |
1 2 3 4 5
|
lmat22lem |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 14 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 15 |
|
eluzfz1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... 2 ) ) |
| 16 |
14 15
|
ax-mp |
|- 1 e. ( 1 ... 2 ) |
| 17 |
16
|
a1i |
|- ( ph -> 1 e. ( 1 ... 2 ) ) |
| 18 |
1 7 10 12 13 17 17
|
lmatfval |
|- ( ph -> ( 1 M 1 ) = ( ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) ` ( 1 - 1 ) ) ) |
| 19 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 20 |
19
|
fveq2i |
|- ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) = ( <" <" A B "> <" C D "> "> ` 0 ) |
| 21 |
|
s2fv0 |
|- ( <" A B "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
| 22 |
8 21
|
syl |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) |
| 23 |
20 22
|
eqtrid |
|- ( ph -> ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) = <" A B "> ) |
| 24 |
19
|
a1i |
|- ( ph -> ( 1 - 1 ) = 0 ) |
| 25 |
23 24
|
fveq12d |
|- ( ph -> ( ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) ` ( 1 - 1 ) ) = ( <" A B "> ` 0 ) ) |
| 26 |
|
s2fv0 |
|- ( A e. V -> ( <" A B "> ` 0 ) = A ) |
| 27 |
2 26
|
syl |
|- ( ph -> ( <" A B "> ` 0 ) = A ) |
| 28 |
18 25 27
|
3eqtrd |
|- ( ph -> ( 1 M 1 ) = A ) |