| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmat22.m |  |-  M = ( litMat ` <" <" A B "> <" C D "> "> ) | 
						
							| 2 |  | lmat22.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | lmat22.b |  |-  ( ph -> B e. V ) | 
						
							| 4 |  | lmat22.c |  |-  ( ph -> C e. V ) | 
						
							| 5 |  | lmat22.d |  |-  ( ph -> D e. V ) | 
						
							| 6 |  | 2nn |  |-  2 e. NN | 
						
							| 7 | 6 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 8 | 2 3 | s2cld |  |-  ( ph -> <" A B "> e. Word V ) | 
						
							| 9 | 4 5 | s2cld |  |-  ( ph -> <" C D "> e. Word V ) | 
						
							| 10 | 8 9 | s2cld |  |-  ( ph -> <" <" A B "> <" C D "> "> e. Word Word V ) | 
						
							| 11 |  | s2len |  |-  ( # ` <" <" A B "> <" C D "> "> ) = 2 | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( # ` <" <" A B "> <" C D "> "> ) = 2 ) | 
						
							| 13 | 1 2 3 4 5 | lmat22lem |  |-  ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) | 
						
							| 14 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 15 |  | eluzfz1 |  |-  ( 2 e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... 2 ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  1 e. ( 1 ... 2 ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> 1 e. ( 1 ... 2 ) ) | 
						
							| 18 | 1 7 10 12 13 17 17 | lmatfval |  |-  ( ph -> ( 1 M 1 ) = ( ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) ` ( 1 - 1 ) ) ) | 
						
							| 19 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 20 | 19 | fveq2i |  |-  ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) = ( <" <" A B "> <" C D "> "> ` 0 ) | 
						
							| 21 |  | s2fv0 |  |-  ( <" A B "> e. Word V -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) | 
						
							| 22 | 8 21 | syl |  |-  ( ph -> ( <" <" A B "> <" C D "> "> ` 0 ) = <" A B "> ) | 
						
							| 23 | 20 22 | eqtrid |  |-  ( ph -> ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) = <" A B "> ) | 
						
							| 24 | 19 | a1i |  |-  ( ph -> ( 1 - 1 ) = 0 ) | 
						
							| 25 | 23 24 | fveq12d |  |-  ( ph -> ( ( <" <" A B "> <" C D "> "> ` ( 1 - 1 ) ) ` ( 1 - 1 ) ) = ( <" A B "> ` 0 ) ) | 
						
							| 26 |  | s2fv0 |  |-  ( A e. V -> ( <" A B "> ` 0 ) = A ) | 
						
							| 27 | 2 26 | syl |  |-  ( ph -> ( <" A B "> ` 0 ) = A ) | 
						
							| 28 | 18 25 27 | 3eqtrd |  |-  ( ph -> ( 1 M 1 ) = A ) |