| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clpad |
|- leftpad |
| 1 |
|
vc |
|- c |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
vl |
|- l |
| 5 |
|
cn0 |
|- NN0 |
| 6 |
|
cc0 |
|- 0 |
| 7 |
|
cfzo |
|- ..^ |
| 8 |
4
|
cv |
|- l |
| 9 |
|
cmin |
|- - |
| 10 |
|
chash |
|- # |
| 11 |
3
|
cv |
|- w |
| 12 |
11 10
|
cfv |
|- ( # ` w ) |
| 13 |
8 12 9
|
co |
|- ( l - ( # ` w ) ) |
| 14 |
6 13 7
|
co |
|- ( 0 ..^ ( l - ( # ` w ) ) ) |
| 15 |
1
|
cv |
|- c |
| 16 |
15
|
csn |
|- { c } |
| 17 |
14 16
|
cxp |
|- ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) |
| 18 |
|
cconcat |
|- ++ |
| 19 |
17 11 18
|
co |
|- ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) |
| 20 |
4 5 19
|
cmpt |
|- ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) |
| 21 |
1 3 2 2 20
|
cmpo |
|- ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) |
| 22 |
0 21
|
wceq |
|- leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) |