| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clpad |  |-  leftpad | 
						
							| 1 |  | vc |  |-  c | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | vl |  |-  l | 
						
							| 5 |  | cn0 |  |-  NN0 | 
						
							| 6 |  | cc0 |  |-  0 | 
						
							| 7 |  | cfzo |  |-  ..^ | 
						
							| 8 | 4 | cv |  |-  l | 
						
							| 9 |  | cmin |  |-  - | 
						
							| 10 |  | chash |  |-  # | 
						
							| 11 | 3 | cv |  |-  w | 
						
							| 12 | 11 10 | cfv |  |-  ( # ` w ) | 
						
							| 13 | 8 12 9 | co |  |-  ( l - ( # ` w ) ) | 
						
							| 14 | 6 13 7 | co |  |-  ( 0 ..^ ( l - ( # ` w ) ) ) | 
						
							| 15 | 1 | cv |  |-  c | 
						
							| 16 | 15 | csn |  |-  { c } | 
						
							| 17 | 14 16 | cxp |  |-  ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) | 
						
							| 18 |  | cconcat |  |-  ++ | 
						
							| 19 | 17 11 18 | co |  |-  ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) | 
						
							| 20 | 4 5 19 | cmpt |  |-  ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) | 
						
							| 21 | 1 3 2 2 20 | cmpo |  |-  ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) | 
						
							| 22 | 0 21 | wceq |  |-  leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) |