Step |
Hyp |
Ref |
Expression |
0 |
|
clpad |
|- leftpad |
1 |
|
vc |
|- c |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
vl |
|- l |
5 |
|
cn0 |
|- NN0 |
6 |
|
cc0 |
|- 0 |
7 |
|
cfzo |
|- ..^ |
8 |
4
|
cv |
|- l |
9 |
|
cmin |
|- - |
10 |
|
chash |
|- # |
11 |
3
|
cv |
|- w |
12 |
11 10
|
cfv |
|- ( # ` w ) |
13 |
8 12 9
|
co |
|- ( l - ( # ` w ) ) |
14 |
6 13 7
|
co |
|- ( 0 ..^ ( l - ( # ` w ) ) ) |
15 |
1
|
cv |
|- c |
16 |
15
|
csn |
|- { c } |
17 |
14 16
|
cxp |
|- ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) |
18 |
|
cconcat |
|- ++ |
19 |
17 11 18
|
co |
|- ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) |
20 |
4 5 19
|
cmpt |
|- ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) |
21 |
1 3 2 2 20
|
cmpo |
|- ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) |
22 |
0 21
|
wceq |
|- leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) |