Step |
Hyp |
Ref |
Expression |
1 |
|
lpadval.1 |
|- ( ph -> L e. NN0 ) |
2 |
|
lpadval.2 |
|- ( ph -> W e. Word S ) |
3 |
|
lpadval.3 |
|- ( ph -> C e. S ) |
4 |
|
df-lpad |
|- leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) |
5 |
4
|
a1i |
|- ( ph -> leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) ) |
6 |
|
simprr |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> w = W ) |
7 |
6
|
fveq2d |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> ( # ` w ) = ( # ` W ) ) |
8 |
7
|
oveq2d |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> ( l - ( # ` w ) ) = ( l - ( # ` W ) ) ) |
9 |
8
|
oveq2d |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> ( 0 ..^ ( l - ( # ` w ) ) ) = ( 0 ..^ ( l - ( # ` W ) ) ) ) |
10 |
|
simprl |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> c = C ) |
11 |
10
|
sneqd |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> { c } = { C } ) |
12 |
9 11
|
xpeq12d |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) = ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ) |
13 |
12 6
|
oveq12d |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) = ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) |
14 |
13
|
mpteq2dv |
|- ( ( ph /\ ( c = C /\ w = W ) ) -> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) = ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) ) |
15 |
3
|
elexd |
|- ( ph -> C e. _V ) |
16 |
2
|
elexd |
|- ( ph -> W e. _V ) |
17 |
|
nn0ex |
|- NN0 e. _V |
18 |
17
|
a1i |
|- ( ph -> NN0 e. _V ) |
19 |
18
|
mptexd |
|- ( ph -> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) e. _V ) |
20 |
5 14 15 16 19
|
ovmpod |
|- ( ph -> ( C leftpad W ) = ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) ) |
21 |
|
simpr |
|- ( ( ph /\ l = L ) -> l = L ) |
22 |
21
|
oveq1d |
|- ( ( ph /\ l = L ) -> ( l - ( # ` W ) ) = ( L - ( # ` W ) ) ) |
23 |
22
|
oveq2d |
|- ( ( ph /\ l = L ) -> ( 0 ..^ ( l - ( # ` W ) ) ) = ( 0 ..^ ( L - ( # ` W ) ) ) ) |
24 |
23
|
xpeq1d |
|- ( ( ph /\ l = L ) -> ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) = ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) |
25 |
24
|
oveq1d |
|- ( ( ph /\ l = L ) -> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) |
26 |
|
ovexd |
|- ( ph -> ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) e. _V ) |
27 |
20 25 1 26
|
fvmptd |
|- ( ph -> ( ( C leftpad W ) ` L ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) |