| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadval.1 |  |-  ( ph -> L e. NN0 ) | 
						
							| 2 |  | lpadval.2 |  |-  ( ph -> W e. Word S ) | 
						
							| 3 |  | lpadval.3 |  |-  ( ph -> C e. S ) | 
						
							| 4 |  | df-lpad |  |-  leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> leftpad = ( c e. _V , w e. _V |-> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) ) ) | 
						
							| 6 |  | simprr |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> w = W ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> ( # ` w ) = ( # ` W ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> ( l - ( # ` w ) ) = ( l - ( # ` W ) ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> ( 0 ..^ ( l - ( # ` w ) ) ) = ( 0 ..^ ( l - ( # ` W ) ) ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> c = C ) | 
						
							| 11 | 10 | sneqd |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> { c } = { C } ) | 
						
							| 12 | 9 11 | xpeq12d |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) = ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ) | 
						
							| 13 | 12 6 | oveq12d |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) = ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) | 
						
							| 14 | 13 | mpteq2dv |  |-  ( ( ph /\ ( c = C /\ w = W ) ) -> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` w ) ) ) X. { c } ) ++ w ) ) = ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) ) | 
						
							| 15 | 3 | elexd |  |-  ( ph -> C e. _V ) | 
						
							| 16 | 2 | elexd |  |-  ( ph -> W e. _V ) | 
						
							| 17 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 19 | 18 | mptexd |  |-  ( ph -> ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) e. _V ) | 
						
							| 20 | 5 14 15 16 19 | ovmpod |  |-  ( ph -> ( C leftpad W ) = ( l e. NN0 |-> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ l = L ) -> l = L ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( ph /\ l = L ) -> ( l - ( # ` W ) ) = ( L - ( # ` W ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ph /\ l = L ) -> ( 0 ..^ ( l - ( # ` W ) ) ) = ( 0 ..^ ( L - ( # ` W ) ) ) ) | 
						
							| 24 | 23 | xpeq1d |  |-  ( ( ph /\ l = L ) -> ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) = ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ph /\ l = L ) -> ( ( ( 0 ..^ ( l - ( # ` W ) ) ) X. { C } ) ++ W ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) | 
						
							| 26 |  | ovexd |  |-  ( ph -> ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) e. _V ) | 
						
							| 27 | 20 25 1 26 | fvmptd |  |-  ( ph -> ( ( C leftpad W ) ` L ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) |