Metamath Proof Explorer


Theorem lpadval

Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023)

Ref Expression
Hypotheses lpadval.1 φ L 0
lpadval.2 φ W Word S
lpadval.3 φ C S
Assertion lpadval φ C leftpad W L = 0 ..^ L W × C ++ W

Proof

Step Hyp Ref Expression
1 lpadval.1 φ L 0
2 lpadval.2 φ W Word S
3 lpadval.3 φ C S
4 df-lpad leftpad = c V , w V l 0 0 ..^ l w × c ++ w
5 4 a1i φ leftpad = c V , w V l 0 0 ..^ l w × c ++ w
6 simprr φ c = C w = W w = W
7 6 fveq2d φ c = C w = W w = W
8 7 oveq2d φ c = C w = W l w = l W
9 8 oveq2d φ c = C w = W 0 ..^ l w = 0 ..^ l W
10 simprl φ c = C w = W c = C
11 10 sneqd φ c = C w = W c = C
12 9 11 xpeq12d φ c = C w = W 0 ..^ l w × c = 0 ..^ l W × C
13 12 6 oveq12d φ c = C w = W 0 ..^ l w × c ++ w = 0 ..^ l W × C ++ W
14 13 mpteq2dv φ c = C w = W l 0 0 ..^ l w × c ++ w = l 0 0 ..^ l W × C ++ W
15 3 elexd φ C V
16 2 elexd φ W V
17 nn0ex 0 V
18 17 a1i φ 0 V
19 18 mptexd φ l 0 0 ..^ l W × C ++ W V
20 5 14 15 16 19 ovmpod φ C leftpad W = l 0 0 ..^ l W × C ++ W
21 simpr φ l = L l = L
22 21 oveq1d φ l = L l W = L W
23 22 oveq2d φ l = L 0 ..^ l W = 0 ..^ L W
24 23 xpeq1d φ l = L 0 ..^ l W × C = 0 ..^ L W × C
25 24 oveq1d φ l = L 0 ..^ l W × C ++ W = 0 ..^ L W × C ++ W
26 ovexd φ 0 ..^ L W × C ++ W V
27 20 25 1 26 fvmptd φ C leftpad W L = 0 ..^ L W × C ++ W