Step |
Hyp |
Ref |
Expression |
1 |
|
lpadval.1 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
2 |
|
lpadval.2 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
3 |
|
lpadval.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
4 |
|
df-lpad |
⊢ leftpad = ( 𝑐 ∈ V , 𝑤 ∈ V ↦ ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) ) ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → leftpad = ( 𝑐 ∈ V , 𝑤 ∈ V ↦ ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) ) ) ) |
6 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → 𝑤 = 𝑊 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → ( 𝑙 − ( ♯ ‘ 𝑤 ) ) = ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) = ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → 𝑐 = 𝐶 ) |
11 |
10
|
sneqd |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → { 𝑐 } = { 𝐶 } ) |
12 |
9 11
|
xpeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) = ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ) |
13 |
12 6
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) = ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) |
14 |
13
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑤 = 𝑊 ) ) → ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑤 ) ) ) × { 𝑐 } ) ++ 𝑤 ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) ) |
15 |
3
|
elexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
16 |
2
|
elexd |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
17 |
|
nn0ex |
⊢ ℕ0 ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
19 |
18
|
mptexd |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) ∈ V ) |
20 |
5 14 15 16 19
|
ovmpod |
⊢ ( 𝜑 → ( 𝐶 leftpad 𝑊 ) = ( 𝑙 ∈ ℕ0 ↦ ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 = 𝐿 ) → 𝑙 = 𝐿 ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑙 = 𝐿 ) → ( 𝑙 − ( ♯ ‘ 𝑊 ) ) = ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑙 = 𝐿 ) → ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) = ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) ) |
24 |
23
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑙 = 𝐿 ) → ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) = ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ) |
25 |
24
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑙 = 𝐿 ) → ( ( ( 0 ..^ ( 𝑙 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) = ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) |
26 |
|
ovexd |
⊢ ( 𝜑 → ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ∈ V ) |
27 |
20 25 1 26
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐶 leftpad 𝑊 ) ‘ 𝐿 ) = ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ++ 𝑊 ) ) |