| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadval.1 | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 2 |  | lpadval.2 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 3 |  | lpadval.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 4 |  | df-lpad | ⊢  leftpad   =  ( 𝑐  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →   leftpad   =  ( 𝑐  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) ) ) ) | 
						
							| 6 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  𝑤  =  𝑊 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  ( 𝑙  −  ( ♯ ‘ 𝑤 ) )  =  ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  =  ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  𝑐  =  𝐶 ) | 
						
							| 11 | 10 | sneqd | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  { 𝑐 }  =  { 𝐶 } ) | 
						
							| 12 | 9 11 | xpeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  =  ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) ) | 
						
							| 13 | 12 6 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 )  =  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) | 
						
							| 14 | 13 | mpteq2dv | ⊢ ( ( 𝜑  ∧  ( 𝑐  =  𝐶  ∧  𝑤  =  𝑊 ) )  →  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑤 ) ) )  ×  { 𝑐 } )  ++  𝑤 ) )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) ) | 
						
							| 15 | 3 | elexd | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 16 | 2 | elexd | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 17 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 19 | 18 | mptexd | ⊢ ( 𝜑  →  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) )  ∈  V ) | 
						
							| 20 | 5 14 15 16 19 | ovmpod | ⊢ ( 𝜑  →  ( 𝐶  leftpad  𝑊 )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑙  =  𝐿 )  →  𝑙  =  𝐿 ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑙  =  𝐿 )  →  ( 𝑙  −  ( ♯ ‘ 𝑊 ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑙  =  𝐿 )  →  ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  =  ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 24 | 23 | xpeq1d | ⊢ ( ( 𝜑  ∧  𝑙  =  𝐿 )  →  ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  =  ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑙  =  𝐿 )  →  ( ( ( 0 ..^ ( 𝑙  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 )  =  ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) | 
						
							| 26 |  | ovexd | ⊢ ( 𝜑  →  ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 )  ∈  V ) | 
						
							| 27 | 20 25 1 26 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 )  =  ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) |