Description: Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpadlem1.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| Assertion | lpadlem1 | ⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ∈ Word 𝑆 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lpadlem1.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| 2 | fconst6g | ⊢ ( 𝐶 ∈ 𝑆 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) : ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) ⟶ 𝑆 ) | |
| 3 | iswrdi | ⊢ ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) : ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) ⟶ 𝑆 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ∈ Word 𝑆 ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ∈ Word 𝑆 ) |