Description: Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lpadlem1.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
Assertion | lpadlem1 | ⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ∈ Word 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpadlem1.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
2 | fconst6g | ⊢ ( 𝐶 ∈ 𝑆 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) : ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) ⟶ 𝑆 ) | |
3 | iswrdi | ⊢ ( ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) : ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) ⟶ 𝑆 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ∈ Word 𝑆 ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) ∈ Word 𝑆 ) |