| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 2 |  | lpadlen.2 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 3 |  | lpadlen.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 4 |  | lpadlen1.1 | ⊢ ( 𝜑  →  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 5 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑆  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 8 | 1 | nn0zd | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 9 |  | fzo0n | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝐿  ≤  ( ♯ ‘ 𝑊 )  ↔  ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  =  ∅ ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  =  ∅ ) | 
						
							| 11 | 7 8 4 10 | syl21anc | ⊢ ( 𝜑  →  ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  =  ∅ ) | 
						
							| 12 | 11 | xpeq1d | ⊢ ( 𝜑  →  ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  =  ( ∅  ×  { 𝐶 } ) ) | 
						
							| 13 |  | 0xp | ⊢ ( ∅  ×  { 𝐶 } )  =  ∅ | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( 𝜑  →  ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  =  ∅ ) |