Step |
Hyp |
Ref |
Expression |
1 |
|
lpadlen.1 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
2 |
|
lpadlen.2 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
3 |
|
lpadlen.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
4 |
|
lpadlen1.1 |
⊢ ( 𝜑 → 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) |
5 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑆 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
7 |
6
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
8 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
9 |
|
fzo0n |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) ↔ ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) = ∅ ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) = ∅ ) |
11 |
7 8 4 10
|
syl21anc |
⊢ ( 𝜑 → ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) = ∅ ) |
12 |
11
|
xpeq1d |
⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) = ( ∅ × { 𝐶 } ) ) |
13 |
|
0xp |
⊢ ( ∅ × { 𝐶 } ) = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) = ∅ ) |