| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpadlen.1 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 2 |
|
lpadlen.2 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
| 3 |
|
lpadlen.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 4 |
|
lpadlen1.1 |
⊢ ( 𝜑 → 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) |
| 5 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑆 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 7 |
6
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 8 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
| 9 |
|
fzo0n |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 ≤ ( ♯ ‘ 𝑊 ) ↔ ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) = ∅ ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) = ∅ ) |
| 11 |
7 8 4 10
|
syl21anc |
⊢ ( 𝜑 → ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) = ∅ ) |
| 12 |
11
|
xpeq1d |
⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) = ( ∅ × { 𝐶 } ) ) |
| 13 |
|
0xp |
⊢ ( ∅ × { 𝐶 } ) = ∅ |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝜑 → ( ( 0 ..^ ( 𝐿 − ( ♯ ‘ 𝑊 ) ) ) × { 𝐶 } ) = ∅ ) |