Step |
Hyp |
Ref |
Expression |
1 |
|
lpadlen.1 |
|- ( ph -> L e. NN0 ) |
2 |
|
lpadlen.2 |
|- ( ph -> W e. Word S ) |
3 |
|
lpadlen.3 |
|- ( ph -> C e. S ) |
4 |
|
lpadlen1.1 |
|- ( ph -> L <_ ( # ` W ) ) |
5 |
|
lencl |
|- ( W e. Word S -> ( # ` W ) e. NN0 ) |
6 |
2 5
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
7 |
6
|
nn0zd |
|- ( ph -> ( # ` W ) e. ZZ ) |
8 |
1
|
nn0zd |
|- ( ph -> L e. ZZ ) |
9 |
|
fzo0n |
|- ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) -> ( L <_ ( # ` W ) <-> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) ) |
10 |
9
|
biimpa |
|- ( ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) /\ L <_ ( # ` W ) ) -> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) |
11 |
7 8 4 10
|
syl21anc |
|- ( ph -> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) |
12 |
11
|
xpeq1d |
|- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = ( (/) X. { C } ) ) |
13 |
|
0xp |
|- ( (/) X. { C } ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = (/) ) |