| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 |  |-  ( ph -> L e. NN0 ) | 
						
							| 2 |  | lpadlen.2 |  |-  ( ph -> W e. Word S ) | 
						
							| 3 |  | lpadlen.3 |  |-  ( ph -> C e. S ) | 
						
							| 4 |  | lpadlen1.1 |  |-  ( ph -> L <_ ( # ` W ) ) | 
						
							| 5 |  | lencl |  |-  ( W e. Word S -> ( # ` W ) e. NN0 ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 7 | 6 | nn0zd |  |-  ( ph -> ( # ` W ) e. ZZ ) | 
						
							| 8 | 1 | nn0zd |  |-  ( ph -> L e. ZZ ) | 
						
							| 9 |  | fzo0n |  |-  ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) -> ( L <_ ( # ` W ) <-> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) /\ L <_ ( # ` W ) ) -> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) | 
						
							| 11 | 7 8 4 10 | syl21anc |  |-  ( ph -> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) | 
						
							| 12 | 11 | xpeq1d |  |-  ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = ( (/) X. { C } ) ) | 
						
							| 13 |  | 0xp |  |-  ( (/) X. { C } ) = (/) | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = (/) ) |