Metamath Proof Explorer


Theorem lpadlem3

Description: Lemma for lpadlen1 . (Contributed by Thierry Arnoux, 7-Aug-2023)

Ref Expression
Hypotheses lpadlen.1
|- ( ph -> L e. NN0 )
lpadlen.2
|- ( ph -> W e. Word S )
lpadlen.3
|- ( ph -> C e. S )
lpadlen1.1
|- ( ph -> L <_ ( # ` W ) )
Assertion lpadlem3
|- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = (/) )

Proof

Step Hyp Ref Expression
1 lpadlen.1
 |-  ( ph -> L e. NN0 )
2 lpadlen.2
 |-  ( ph -> W e. Word S )
3 lpadlen.3
 |-  ( ph -> C e. S )
4 lpadlen1.1
 |-  ( ph -> L <_ ( # ` W ) )
5 lencl
 |-  ( W e. Word S -> ( # ` W ) e. NN0 )
6 2 5 syl
 |-  ( ph -> ( # ` W ) e. NN0 )
7 6 nn0zd
 |-  ( ph -> ( # ` W ) e. ZZ )
8 1 nn0zd
 |-  ( ph -> L e. ZZ )
9 fzo0n
 |-  ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) -> ( L <_ ( # ` W ) <-> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) ) )
10 9 biimpa
 |-  ( ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) /\ L <_ ( # ` W ) ) -> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) )
11 7 8 4 10 syl21anc
 |-  ( ph -> ( 0 ..^ ( L - ( # ` W ) ) ) = (/) )
12 11 xpeq1d
 |-  ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = ( (/) X. { C } ) )
13 0xp
 |-  ( (/) X. { C } ) = (/)
14 12 13 eqtrdi
 |-  ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = (/) )