Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
LeftPad Project
lpadlem3
Next ⟩
lpadlen1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lpadlem3
Description:
Lemma for
lpadlen1
.
(Contributed by
Thierry Arnoux
, 7-Aug-2023)
Ref
Expression
Hypotheses
lpadlen.1
⊢
φ
→
L
∈
ℕ
0
lpadlen.2
⊢
φ
→
W
∈
Word
S
lpadlen.3
⊢
φ
→
C
∈
S
lpadlen1.1
⊢
φ
→
L
≤
W
Assertion
lpadlem3
⊢
φ
→
0
..^
L
−
W
×
C
=
∅
Proof
Step
Hyp
Ref
Expression
1
lpadlen.1
⊢
φ
→
L
∈
ℕ
0
2
lpadlen.2
⊢
φ
→
W
∈
Word
S
3
lpadlen.3
⊢
φ
→
C
∈
S
4
lpadlen1.1
⊢
φ
→
L
≤
W
5
lencl
⊢
W
∈
Word
S
→
W
∈
ℕ
0
6
2
5
syl
⊢
φ
→
W
∈
ℕ
0
7
6
nn0zd
⊢
φ
→
W
∈
ℤ
8
1
nn0zd
⊢
φ
→
L
∈
ℤ
9
fzo0n
⊢
W
∈
ℤ
∧
L
∈
ℤ
→
L
≤
W
↔
0
..^
L
−
W
=
∅
10
9
biimpa
⊢
W
∈
ℤ
∧
L
∈
ℤ
∧
L
≤
W
→
0
..^
L
−
W
=
∅
11
7
8
4
10
syl21anc
⊢
φ
→
0
..^
L
−
W
=
∅
12
11
xpeq1d
⊢
φ
→
0
..^
L
−
W
×
C
=
∅
×
C
13
0xp
⊢
∅
×
C
=
∅
14
12
13
eqtrdi
⊢
φ
→
0
..^
L
−
W
×
C
=
∅