Step |
Hyp |
Ref |
Expression |
1 |
|
lpadlen.1 |
|- ( ph -> L e. NN0 ) |
2 |
|
lpadlen.2 |
|- ( ph -> W e. Word S ) |
3 |
|
lpadlen.3 |
|- ( ph -> C e. S ) |
4 |
|
lpadlen1.1 |
|- ( ph -> L <_ ( # ` W ) ) |
5 |
1 2 3
|
lpadval |
|- ( ph -> ( ( C leftpad W ) ` L ) = ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) ) |
6 |
1 2 3 4
|
lpadlem3 |
|- ( ph -> ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) = (/) ) |
7 |
6
|
oveq1d |
|- ( ph -> ( ( ( 0 ..^ ( L - ( # ` W ) ) ) X. { C } ) ++ W ) = ( (/) ++ W ) ) |
8 |
|
ccatlid |
|- ( W e. Word S -> ( (/) ++ W ) = W ) |
9 |
2 8
|
syl |
|- ( ph -> ( (/) ++ W ) = W ) |
10 |
5 7 9
|
3eqtrd |
|- ( ph -> ( ( C leftpad W ) ` L ) = W ) |
11 |
10
|
fveq2d |
|- ( ph -> ( # ` ( ( C leftpad W ) ` L ) ) = ( # ` W ) ) |